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speed 
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I. Introduction 

The  transfer  between  two  space  orbits  by  applying  two 
I 

I terminal  impulses  under  specified  terminal  conditions  is a 
; 

; problem of both  theoretical  and  practical  interest in the 

fuel-optimal  space  maneuvers.  The  problem  is to determine 

the  optimal  transfer  trajectory so that  the  sum  of  the  two 

terminal  impulses is a  minimum. 

Investigations  of  the  optimal  two-impulse  orbital  trans- 

fer  problem  were  first  done  by  Hohmann,’  and  analytical 

foundations of such  investigations  were  mostly  attributed  to 

Lawden’s work. lo The  2-terminal,  2-impulse  transfer  problem, 

a  particular  case  of  Lawden’s  more  general  problem,  was  first 

formulated  and  treated  by  Vargo,  and  later  investigated  by 

many  contemporary  authors.  Among  the  previous  work  done  on 

this  problem,  Altman  and  Pistiner”  established  an  eighth 

degree  polynominal  equation  governing  the  optimization,  which 

formed  the  basis  for  much of  the  current  development,  and  a 

similar  equation  was  also  given by Lee.  l6 The  octic  equation 

was  later  reformulated in  symmetric  velocity  coordinates  and 

studied  under  broad  terminal  conditions  by  the  author. 25 As a 

result  of  such  investigations,  one  bewares  of  the  following 

possible  complications  in  the  solution  of  the  problem: 

1. The,  presence of extraneous  roots of the  octic  equa- 

tion,  which  do  not  belong  to  the  extrema1  impulse 

solution. 



2. 

3 .  

4.  

An extrema1  impulse  solut ion of t h e   o c t i c  may g i v e  a 

maximal to t a l   impu l se   i n s t ead   o f  a minimal  one. 

There. may exist more than   one   loca l   min imal   to ta l  

impulse   so lu t ion .  

The a r i s i n g   o f   a n   u n r e a l i s t i c   o p t i m a l   s o l u t i o n ,   t h a t  

i s ,  a s o l u t i o n   r e s u l t i n g   i n  a t r a n s f e r   t r a j e c t o r y  

which l e a d s   t o   t h e   f i n a l   t e r m i n a l   v i a   i n f i n i t y .  

I n  view  of   these  possible   complicat ions,   the   determinat ion 

of  a r ea l i s t i c   abso lu t e   min ima l   2 - impu l se   so lu t ion  from t h e  

o c t i c   e q u a t i o n   p r e s e n t s  a formidable   t ask ,   involv ing  many 

p i t f a l l s ,   i n   b o t h   t h e o r e t i c a l   a n a l y s i s  and  numerical  computa- 

t i ons .   In   t he   au tho r ' s   p rev ious   work ,  25 i n s t e a d  of using  an 

a lgeb ra i c   app roach   t o   t he   oc t i c   equa t ion ,  a geometric 

approach   in   the   ve loc i ty   space  i s  adopted,  and some of t h e  

v i t a l   q u e s t i o n s   c o n c e r n i n g   t h e   s o l u t i o n s  were answered,  and 

s e v e r a l   n e c e s s a r y   o r   s u f f i c i e n t   c o n d i t i o n s  were der ived .  

Based  on th i s   p re l iminary   s tudy ,   the   p resent   paper   in tends  

t o   g i v e  a s y s t e m a t i c   p r e d i c t i o n   o n   t h e   c h a r a c t e r i s t i c s  of t h e  

minimal  2-impulse  solution  under  various  terminal  conditions 

by using t h e  bound ing   t r a j ec to r i e s ,  a c o n c e p t   f i r s t   i n t r o d u c e d  

i n  Ref. 25-  I t  w i l l  be   s een   t ha t ,  by the   p roper   choice  of  a 

bounding t r a j e c t o r y   p a i r ,  a g r e a t   d e a l  of informat ion  on t h e  

minimal   2 - impulse   so lu t ion ,   qua l i ta t ive   and   quant i ta t ive ,  may 

be   ob ta ined   wi thout   so lv ing   the   oc t ic   equa t ion ,   and  t h i s  

information may i n   t u r n   h e l p   t o   l o c a t e   t h e   o p t i m a l   s o l u t i o n  

in   numerical   computat ion.  

2 



11. Formulation  in  Symmetric  Velocity  Coordinates 

Let  the  terminal  conditions  be  specified  by  the  state 
A A  coordinates  (rl, Val) and (r2, Vo2) at  the  initial  and 

final  terminal  points  respectively,  the  problem is to 

minimize  the  total  velocity  impulse 

4 -  

f = fl + f2 (1) 

where 

and Ti is  the  terminal  velocity  required  for  the  transfer 
(Figures 1, 2 ) .  Resolving  into  the  oblique  velocity 

components  along  the  terminal  radial  direction  and  the 

chordal  direction  (Figure 3 ) ,  Godal's  Compatibility 

conditions4'  enable  one  to  write 
4 v = Vcec + VRerl -. -. 
1 

A -.I v2 = Vcec + vRZr2 

where  the  velocity  coordinates Vc and VR are  connected  by 

VcVR - -1-I tan - JI 2 (4) 

The  central  angle JI and  the  distance d, as  defined  in 

Figure 3 ,  are  completely  determined  by  the  position  vectors 
-. 4 r  and r2, which  are  assumed  to  be  noncollinear,  that  is, 1 
O<JI< . r r .  The  coordinate  pair  (Vc,  VR)  is  known  as  the 

symmetric  velocity  coordinate  pair  in  view of Equations ( 3 ) .  

3 
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FIG. I GEOMETRY OF 2-TERMINAL  TRANSFER IN SPACE 



DIRECTION ANGLES OF THE 
TERMINAL  VELOCITY - 
INCREMENT ( i = I ,2) TRANSFER PLANE 

FIG, 2 GEOMETRY OF VELOCITY VECTORS, 2-IMPULSE TRANSFER 



THE  TRANSFER  TRAJECTORY 

I 
3 

THE IN- PLACE  VELOCITY 
COMPONENTS 

THE  REFERANCE UNIT VECTORS 

FIG.3 THE TRANSFER  TRAJECTORY AND THE IN-PLANE VELOCITY  COMPONENTS 



I 

and ( 4 )  which hold f o r  a l l  t r a n s f e r   t r a j e c t o r i e s  between 

t h e  two terminal po in ts .  

The ana ly t i c   cond i t ion   gove rn ing   t he   op t ima l   t r ans fe r  

is given by 

df l  + d f 2  = 0 

which, a f t e r   p e r f o r m i n g   t h e   d i f f e r e n t i a t i o n   t o g e t h e r   w i t h  

Equations (21, (.3.) and (43, y i e l d s   t h e  two polynomial  equations,  

known as t h e   s t a t i o n a r i t y   o c t i c s  , 25 

where t h e   c o e f f i c i e n t s  Cn and Rn are func t ions   o f   the  

fol lowing  terminal   parameters :  
-.. 4 

Moi = Voi . eri 

(i = 1 , 2 )  
Po i  - Voi - 2K COS Ti - 2 

Thus w e  may w r i t e  

For   f ixed   te rmina l   condi t ions  a l l  t h e s e   c o e f f i c i e n t s  are 

constants,   and  Equations (6C)and  (6R)define a pa i r   o f   op t imal  

7 



values   of  VC*. and VR** for  a n   i n t e r n a l  extremum  of f .  

Der iva t ions  of t h e   s t a t i o n a r i t y  octics a n d   t h e   e x p l i c i t  

forms of  Equations (Uare given  in   Appendix A, and  formulas 

for  t h e   t r a n s f e r   t r a j e c t o r y  parameters i n  terms of t h e  

symmetr ic   veloci ty   coordinates  V and VR are summarized 

i n  Appendix B. 

C 

A s  shown in  Reference  25,   the  minimal  2-impulse  transfer 

t r a j e c t o r y  T**, def ined  by Equation ( 5 ) ,  is  bounded  between 

t h e  two t r a n s f e r   t r a j e c t o r i e s ,  T*l and  T*2,  defined by 

d f l  = 0 and  df2 = 0 (12) 

r e s p e c t i v e l y .   I n  terms of   the   coord ina te  Vc, Equation (12), 

t oge the r   w i th   t he   cons t r a in t   Equa t ion  ( 4 1 ,  y i e l d s   t h e  two 

four th   degree   equat ions  
4 3 

vc*l - NOIVC*l + KMOIVC*l 
- K2 = 0 (13C-1) 

4 3 
vc*2 - N02VC*2 + KM02VC*2 

- K 2 = 0  (13C-2) 

20 
known as t h e   s t a t i o n a r i t y   q u a r t i c s  , one   for   each  

te rmina l .  Similar equat ions  may be w r i t t e n   i n  terms of   the  

v a r i a b l e s  VR*l and VR*2. The t r a j e c t o r i e s  T,l and  T*2, 

def ined  by Equations (13C-1, 2 ) ,  have   the   phys ica l  

s i g n i f i c a n c e   o f   b e i n g   t h e   t r a n s f e r  t ra jector ies  between 

t h e  same t w o  t e rmina l   po in t s  Q, and Q w i t h   s t a t i o n a r y  

ve loc i ty   impu l ses  a t  Q, and Q, respec t ive ly ,   hence   they  

w i l l  be r e f e r r e d  t o  as the   s t a t iona ry   1 - impu l se   t r ans fe r  

t r a j e c t o r i e s .   A n a l y t i c   s t u d i e s   o f   E q u a t i o n s  (13C-1, 2) 

show t h a t   e a c h   q u a r t i c   h a s  a t  least  two and a t  most  four 

2' 

20 
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real  roots, depending on the   t e rmina l   cond i t ions .  I n  

o t h e r   w o r d s ,   e a c h   s t a t i o n a r i t y   q u a r t i c  may y i e l d  t w o  t o  

f o u r   d i s t i n c t   s t a t i o n a r y   1 - i m p u l s e   t r a n s f e r   t r a j e c t o r i e s .  

The choice  of   such trajectories fo r   t he   bound ing   pa i r  w i l l  

b e   p o s t p o n e d   u n t i l   t h e   t r a n s f e r   g e o m e t r y   i n   t h e   v e l o c i t y  

space is s tud ied .  

9 





111. Preliminaries  on  the  Two-Terminal  Transfer 

Based  on  the  geometric  studies of two-terminal  transfers 

in  the  position  and  velocity  spaces, 18, 20,  25 

previously  developed  concepts  and  terminology  which  form 

the  background of the  present  investigation  will  now  be 

briefly  given  below. 

A. On  the  Constraining  Hyperbola 

1. The  tip  of  the  transfer  velocity  vector  at  each 

terminal  required  for  a  2-terminal  transfer,  is  confined  in 

the  hodograph  plane  on  a  hyperbola,  defined  by  Godal's 

compatibility  condition,  Eq. ( 4 ) .  Such  a  hyperbola  is 

called  the  constraining  hyperbola  for  the  terminal  velocity, 

and  there  is  one  for  each  terminal.  The  geometry  of  each 

constraining  hyperbola  is  completely  determined  by  the  two 

position  vectors rl and  r2.  Characteristics  of  the 

constraining  hyperbola,  and  its  principal  geometric  elements 

a a 

are  summarized  in  Appendix  C. 

2. Each  constraining  hyperbola  consists 

branches : 

the  positive  branch: Vc 7 0, VR > 0 , a 
short  transfers; 

of  two 

ssociat ed  with 

1 1  



The pos i t i ve   b ranches  of t h e  t w o  cons t ra in ing   hyperbolas  

c o n s t i t u t e  a s h o r t   t r a n s f e r   p a i r ,   w h i l e   t h e  t w o  nega t ive  

branches,  a l o n g   t r a n s f e r   p a i r   ( S e e   F i g u r e  4 ) .  The h a l f -  

p lane  (Vr > 0 )  i n  which t h e   p o s i t i v e   b r a n c h  l ies  w i l l  be  

des igna ted  as t h e   p o s i t i v e   h a l f - p l a n e ,  and t h a t  (Vr < 0 )  i n  

which the   nega t ive   b ranch  l i e s ,  the   nega t ive   ha l f -p lane .  

3 .  A l l  s o l u t i o n   p o i n t s   i n   t h e  hodograph  plane  for   the 

two-terminal   t ransfers ,   opt imal   or   nonopt imal ,  are 

necessar i ly   conf ined   on   the   cons t ra in ing   hyperbolas .   The  

s o l u t i o n   p o i n t  ( Q , )  f o r   t h e   i n i t i a l   t e r m i n a l   v e l o c i t y  and 
I 

i t s  corresponding  point  (a,) f o r  

veloci ty   form a p a i r   o f   t r a n s f e r  

connecting a t r a n s f e r   p o i n t   p a i r  

s epa ra t ion  I). 4 ,  1 8  

4 .  The type  of t h e   t r a n s f e r  

t h e   f i n a l   t e r m i n a l  

po in t s .  The l i n e  

b i s e c t s   t h e   a n g l e   o f  

conic  w i l l  b e   e l l i p t i c ,  

hyperbol ic ,   o r   parabol ic   accord ing  as t h e   t r a n s f e r   p o i n t  

Qi l i e s  i n s i d e ,   o u t s i d e ,   o r   o n   t h e  c r i t i ca l  c i rc le ,  V = V*, 

i n   t h e  hodograph  plane.  Thus,  each  branch of the   cons t r a in ing  

hyperbola i s  d iv ided  by t h e   c r i t i c a l  c i rc le  i n t o  two 

p o r t i o n s :   t h e   e l l i p t i c   p o r t i o n  and the   hype rbo l i c   po r t ion  

as shown i n   F i g u r e  C-1 ,  Appendix C.  The p o i n t s  of 

i n t e r s e c t i o n  of t h e   h y p e r b o l a   a n d   t h e   c r i t i c a l  c i rc le  are 

t h e  c r i t i ca l  po in t s   co r re spond ing   t o   pa rabo l i c   t r ans fe r s .  

The hype rbo l i c   po r t ion ,   i nc lud ing  i t s  end   po in t ,   t he  c r i t i ca l  

p o i n t ,   i n   t h e   h a l f - p l a n e ,  V > 0 ,  is t h e   u n r e a l i s t i c   p o r t i o n  

s i n c e  it c o r r e s p o n d s   t o   u n r e a l i s t i c   t r a n s f e r   t r a j e c t o r i e s .  20 
X 
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B. On  the  Stationary  One-Impulse  Transfer  and  the  Orthopoints 

1. Geometrically,  the  stationarity  quartic,  based  on 

Equations  (12)  expresses  the  condition  of  orthogonality 8,20 

-+ d 

AVi dV. = 0 

It  follows  that,  when  a  terminal  velocity  V  is 

prescribed,  each  solution  point fo r  the  stationary  one- 

impulse  transfer  is  given  by  the  foot  of  the  normal  drawn 

from  the  point Q the  projection  of  the  tip  of  V  in  the 

hodograph  plane,  to  the  constraining  hyperbola.  Such  a 

point is called  the  orthopoint  with  respect  to  the  fixed 

point Q and  is  designated  as  Qi*.  Hence  each  real  root 

of  the  stationarity  quartic  corresponds  to  one  orthopoint 

on  the  constraining  hyperbola,  and  vice  versa. 

1 (14) 
3 

Oi 

Oi'  Oi 

Oi' 

2. As each  stationarity  quartic  may  have  two  to  four 

real  roots,  the  number  of  orthopoints  for  a  given  terminal 

velocity  point Q range  from  two  to  four.  Previous 

studies 2o show  that  these  orthopoints  follow  a  general 
Oi 

pattern  as  follows: 

Orthopoint  Designation  Nature  of € i 

'i*a 

Qi*b 

Qi*c 

1st  minimum,  absolute. 

maximum. 

2nd  minimum,  local. 

Qi  *d 3rd minimum, local. 

~~ 
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Here  the  points  Q  and  Qi*c  may  be  coinciding  or  missing 

in  the  real  plane,  depending on the  location  of  Q . We 

may  speak  of  the  orthopoint  as  elliptic,  parabolic, or 

hyperbolic,  and  realistic or unrealistic,  according  to  the 

nature  of  the  portion of the  constraining  hyperbola  on  which 

it  locates. 

i*b 

Oi 

3. The  hodograph  plane  may  be  divided  into  different 

regions  for  the  terminal  velocity  point  Q  according  to 

the  number  and  nature  of  the  orthopoints  associated  with 

it  (See  Figure 5). 

Oi 

The  simple  and  nonsimple  regions  are  separated  by  the 

evolute  of  the  constraining  hyperbola,  which  is  a  form  of 

La& 2o as  follows: 

I Region I Designation I Orthopoints 

S I 2, one  on  each  branch. 
Nonsimple N 4 ,  three  on  the  nearer  branch 

(Qi*ar Qi*br Qi*c) , and  one 
on the  other  (Qi*d) 

On  the  boundary  two  of  the  three  points  on  the  same  branch 

coincide,  Qi*b - - Qi*c'  where f  is  neither  minimum  nor 
maximum;  and  at  each  vertex of the  boundary,  all  three 

points  on  the  same  branch,  Qi*a,  Qi*b  and  Qi*c  coincide, 

with  absolute  minimum  fi.  Typical  distributions  of  the 

orthopoints  are  shown  in  Figure  D-1,  Appendix  D  (where 

the  terminal  subscript  i  has  been  omitted  for  simplicity). 

i 
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FIG. 5 THE  HODOGRAPH  REGION  DIAGRAM 
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I 

The  realistic  and  unrealistic  regions  are  partitioned 

according  as  the  first  minimal  point, (ai*,), hence  its 

associated  trajectory,  is  realistic or unrealistic,  as 

shown  in  Figure 5. The bounding  lines  consist  of  the 

critical  lines,  which  are  the  normal  lines  through  the 

critical  points  in  the  half-.plane V > 0 ,  and  portions  of 

the V - axis. 
X 

r 
The  realistic  region  may  be  further  divided  into  a 

number  of  subregions  for  the  point  Qoi  according  to  the 

types  of  the  trajectories  associated with.the orthopoints 

as  follows : 

Subregion  Designation 

Double  Elliptic  EE 

Hyperbolic-Elliptic  HE 

Double  Hyperbolic  HH 

Here  the  first  letter  indicates  the  type  of  the  trajectory 

associated  with  Qi*a,  and  the  second  letter,  that 

associated  with  Qi*d.  The  points  Qi*b  and Qi*c, if  they 

exist,  and  their  associated  trajectories  will  be  of  the 

same  type  as  that of Qi*a, or  Qi*d.  On  the  critical  lines, 

at  least  one  of  the  trajectories  is  parabolic. 

Likewise,  the  unrealistic  region  may  be  further  divided 

as  follows : 

Subregion  Designation 

Single  Unrealistic  H'E 

Double  Unrealistic  H'H' 

17 



Here  the  same  convention  of  designations used for  the 

realistic  subregions  is  adopted,  with  the  superscript ' 
indicates  unrealistic  transfer. 

All the  foregoing  divisions  of  hodographic  regions 

apply, of  course, to either  terminal point.  For  details, 

see  Appendix D. 
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IV= The Bounding  Trajectories  for  the  Minimal 
Two-Impulse  Transfer 

A. The  Optimal  Transfer  Arc  Pair 

Assume  the  terminal  velocity  point  Q  is  fixed,  and Oi 
let  the  transfer  point  Qi  move  along  the  constraining 

hyperbola. For convenience we designate  the  hyperbolic  arc 

as  positive  or  negative  according  as  the  distance Q Q.(=fi) 

is  increasing  or  decreasing  as  Q  moves  from  left  to  right. 

Evidently,  the  arc  will  change  sign  only  when  Qi  passes 

through  an  orthopoint.  The  stationarity  condition  expressed 

by  Equation(5)indicates  clearly  that  the  two-impulse 

optimal  solution  must  locate  on  a  transfer  pair  of  arcs  of 

opposite  signs.  The  essential  types of such  arc  pairs  are 

shown  in  Figure 6. 

- 
Oi 1 

i 

In  type (A)  the  endpoints  of  the  arc  pair  are  the 

minimal  orthopoints,  one  on  each  arc,  together  with  their 

cotrajectory  points.  They  may  be  either Qi*a,  Qi*c,  or 

Qi*d.  It  is  assumed  that  no  other  orthopoints  exist  on 

either  arc  between  its  endpoints.  On  such  an  arc  pair 

there  is  one  and  only  one  local  minimal  solution. t 

Type (B) is  a  variation of type (A). It  contains  a 

maximal  orthopoint  on  one  of  the  arcs  between  its 

endpoints.  Analytic  studies  show  that  there  is  either 

one  local  minimal  solution  and  one  local  maximal  solution 

on  the  arc  pair,  or none.' If  such  solutions  exist,  they 

See  Appendix E 
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FIG. 6 T Y P I C A L   P A I R S  OF THE  OPTIMAL  TRANSFER  ARCS 



will  actually  locate  on  the  subarc  pairs  defined  by  the 

two  orthopoints,  one  minimal  and  one  maximal,  on  the  same 

arc. 

Type  (C)  is  another  version of type (A), wherein  one of 

the  minimal  orthopoints  is  unrealistic,  and  the  arc  pair  is 

defined  on  the  righthand  side  (Figure 6) by  the  unrealistic 

critical  point  pair.  The  two-impulse  minimum  then  may  be 

either  realistic  or  unrealistic. In the  latter  case  the 

realistic  optimal  solution  will  be  indefinite,  given  by  an 

arbitrary  point  pair  on  the  arc  pair,  close to the 

unrealistic  critical  point  pair. 20 

In  type (D) the  arc  pair  is  defined  by  the  maximal 

orthopoints,  one  on  each  arc,  together  with  their  cotra- 

jectory  points.  It  contains  one  maximal  solution  only,  but 

no  minimal  solution. 1- 

Thus,  in  order  to  locate  the  two-impulse  minimal 

solution  it  is  only  the  arc  pairs of type (A) and  its  two 

variations (B) and ( C )  which  need  to  be  examined.  The 

exclusion of the  arcs of the  same  sign  automatically 

prevents  the  entering of the  extraneous  roots of the 

stationarity  octic,  if any; and  the  exclusion of the  arc 

pair of type (Dl further  prevents  the  entering of the 

maximal  solution.  Consequently  the  problem  narrows  down 

to  searching  the  absolute  minimal  solution  on  the  arc 

pairs of types ( A ) ,  (B) , and ( C )  , where  the  local  minimal 
solutions  are  located. 

+See Appendix E 
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Since  each  optimal  arc  pair  is  essentially  defined  by 

two  orthopoints,  one at each  end,  together  with  their 

cotrajectory  points, we may  specify  such an  arc  pair  by 

giving  the  two  orthopoints  as  its  coordinates, e.g., 

(Q,*,, Q2*d)  is  a  typical  optimal  arc  pair,  which  may  also 

be  written  more  compactly  as (a, d).  By  ignoring  the  order 

of  the  terminal  points,  we  may  regard  the  arc  pairs  (a,  d) 

and (d, a)  as of the  same  combination  (ad).  Evidently, 

optimal  arc  pairs of the  basic  types  (A)  may  have  the 

following  six  combinations: 

(aa) , (ad) I (ad) , (ca) , (cc) , (cd) 
By  associating  b  with  one of the  endpoints,  a  or c, we 

obtain  the  combinations  for  the  arc  pairs  of  the  type (B). 

There  are  also  six  such  combination;  namely, 

(ab-a) , (ab-c) , (ab-d) , (cb-a) , (cb-c) , (cb-d) . 
Arc  pairs  of  type (B) and  the  last  three  combinations of 

type  (A)  would not  be  possible  unless  one  or  both of the 

terminal  velocity  points, Qol and Qo2 are  in  the  nonsimple 

regions,  of  course. By replacing  any  one of the  ortho- 

points  by an unrealistic  critical  points  as  one  endpoint, 

we  obtain  the  optimal  arc  pairs  of  type (C) . 
As  regards  to  the  selection  of  the  optimal  arc  pair  for 

the  absolute  minimum,  no  rigorous  rules  are  available  at 

present.  However,  the  following  observations  may  serve  as 

a  guide: 
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1. When an  opt imal  arc pa i r   o f   the   combina t ion  (aa) 

appea r s ,   t he  t w o  absolute  2-impulse minimum are most l i k e l y  

on t h a t   p a i r .  

2. The local minimum provided by t h e  arc pa i r   (dd)  

is usua l ly   no t   abso lu t e .  

Thus, t o  locate the absolute  2-impulse minimum w e  f i r s t  

l o o k   f o r   t h e  arc pair  (aa) . The arc pair (ad) , i f  it exists,  

may usua l ly   be   ignored .   In   the   absence  of arc p a i r s   o f   t h e  

combination (aa) and  (ad) , or t h e r e  i s  any  doubt,  one may 

always resort t o  the  computation  of a l l  t h e  local minimal 

solut ions  and  comparis ion,   of   course.  

B. The Bounding Tra j ec to ry  Pair  

Associated with  each  optimal arc p a i r   t h e r e  are t w o  

t r a n s f e r  trajectories,  one  corresponding to each  endpoint 

p a i r .  The e x i s t e n c e   o f   a n   i n t e r i o r  minimum f o r   t h e  two- 

impulse   t ransfer   on   such   an  arc p a i r  shows tha t   t he   min ima l  

two-impulse t r a n s f e r   t r a j e c t o r y ,   d e n o t e d  by  T**, is a c t u a l l y  

bounded  between t h e  two bounding   t ra jec tor ies ,   hence   the  

t e r m  "bound ing   t r a j ec to ry   pa i r " .  I t  w i l l  be shown t h a t  T,, 

is  not   on ly  bounded  by  such a t r a j e c t o r y   p a i r   i n   t h e   p o s i t i o n  

space ,   bu t   a l so   i n   t he   ve loc i ty   space   and  many other   parameter  

spaces.  Thus e s s e n t i a l   i n f o r m a t i o n  on t h e   c h a r a c t e r i s t i c s  

of  the  two-impulse minimum  may be  obtained by examining 

i t s  bound ing   t r a j ec to ry   pa i r .  

S ince   an   endpoin t   pa i r  of the   op t ima l  arc p a i r   c o n s i s t  

of bas ica l ly   one   o r thopoin t   and  i t s  c o t r a j e c t o r y   p o i n t ,  a 
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bounding  trajectory  is  in  general  a  stationary  trajectory 

with  respect to the  velocity  impulse at one of the  terminals. 

In  the  special  case  wherein  one  of  the  endpoint  pair  is 

critical  and  unrealistic,  the  corresponding  trajectory  is 

the  unrealistic  parabola,  which  itself  is  unbounded  in  the 

position  space;  nevertheless, it may  serve  as  a  bounding 

trajectory.  Designations  of  the  bounding  trajectories  are 

made  in  accordance  with  the  endpoints  they  associate  with 

as follows : 

Endpoint  Bounding  Trajectory 

Qi *a 

Qi*b 

Qi  *c  T*ic 

Qi*d  *id 

T ,lst  minimal  (abs.)  one-impulse  transfer * ia 
T *ib #maximal  one-impulse  transfer 

,2nd  minimal  one-impulse  transfer 

T ,3rd  minimal  one-impulse  transfer 

Qi* 1 T* *i  ,unrealistic  parabolic  transfer 

With  this  designation  convention  the  coordinates  specifying 

an  optimal  arc  pair  may  now  be  extended  to  a  bounding 

trajectory  pair. For  example,  corresponding  to  the  arc 

pair  (a,d), we  have  the  bounding  trajectory  pair (T T 1 -  

Consequently,  the  different  combinations  previously  given 

for the  optimal  arc  pairs  also  apply  to  the  bounding 

*la'  *2d 

trajectory  pairs.  Thus  corresponding to  the six  possible 

combinations  for  the  arc  pairs of  type ( A ) ,  there  are  six 

possible  combinations  of  the  bounding  trajectory  pair. 

The same  can  be  said  about  the  bounding  trajectory  pairs 

associated  with  the  arc  pairs of types (B) and  (C) . 
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Directly  from  the  previous  analysis  of  the  optimal 

transfer  arc  pairs,  the  following  observations  may  now  be  made: 

1. Basically,  a  bounding  trajectory  pair  is  formed  by 

two  transfer  trajectories  under  the  same  terminal  conditions, 

one  with  a  minimal  initial  velocity  impulse,  and  the  other 

with  a  minimal  final  velocity  impulse.  (Such  a  trajec-tory 

pair  will  be  generally  denoted  by (T,l, T,2). Subscripts 

will  be  added in accordance  with  the  endpoints  of  the  assoc- 

iated  transfer  arc  pair  whenever  necessary.) 

2. A bounding  trajectory  pair  associated  with  the 

optimal  transfer  arc  pair  of  type (A) will  bound  one  and  only 

one  local  minimal  two-impulse  transfer  trajectory  between 

them; and,  in particular, 

(a) A bounding  pair (T,la, T,2a ) formed  by  the  two 

first  minimal  (absolute)  one-impulse  transfer  trajectories 

with  respect  to  the  initial  and  final  velocity  impulses 

separately  usually  bounds  the  absolute  minimal  two- 

impulse  transfer  trajectory; 

(b) A bounding  trajectory  pair  (T *Id# T*2d) formed 

by  the  two  third  minimal  one-impulse  transfer  traject- 

ories  with  respect  to  the  initial  and  final  velocity 

impulses  separately  bounds  only  a  local  minimal  two- 

impulse  transfer  trajectory  which is usually  not  the 

absolute  one. 

2. When  the  optimal  arc  pair  is  of  the  type (B), the 

bounding  pair  made  of  the  two  minimal  one-impulse  transfer 

trajectories  may  bound  one  local  minimal  two-impulse  transfer 
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t r a j e c t o r y ,  or none. If it does bound  one ,   then   there   ex is t s  

a closer bounding  pair  formed by t h e  t w o  t r a n s f e r  traject-  

ories, one  with a minimal   ve loc i ty   impulse ,   and   the   o ther   wi th  

a maximal ve loc i ty   impulse ,   bo th  a t  t h e  same termina l ,  e.g. (T *la'%) 

3 .  When one of the  bounding trajectories is  u n r e a l i s t i c  

(opt imal  arc pa i r s   o f   t ype  (C) ) ,  the  minimal  two-impulse 

t r a j e c t o r y  bounded may become i n d e f i n i t e .  

S e v e r a l   t y p i c a l   b o u n d i n g   t r a j e c t o r y   p a i r s  are 

i l l u s t r a t e d   i n   F i g u r e  7.  

I t  is t o  be no ted   t ha t   a l t hough   t he re   appea r s  t o  be a 

g r e a t   v a r i e t y   o f  t h e  o p t i m a l   t r a n s f e r  arc p a i r s   a n d   t h e i r  

a s soc ia t ed   bound ing   t r a j ec to ry   pa i r s ,   t hey   do   no t  a l l  occur  

f r equen t ly .  For example, when bo th   t e rmina l   ve loc i ty   po in t s ,  

QO1 and Q O 2 ,  are i n  the realist ic s imple   reg ions ,  as i s  

u s u a l l y   t h e  case. The p a t t e r n   o f   t h e   o p t i m a l   a r c   p a i r s   c a n  

f a l l  under   the   fo l lowing  t w o  classes only:  

Class One Kind of Transfer   Other  Kind of Trans fe r  

I 
I1 

In  Class I the absolu te   min imal   two- impulse   t ransfer   t ra jec tory  

w i l l  l i k e l y  be bounded by t h e   t r a j e c t o r y   p a i r  (T,la, T ,2a) ,  

b u t   u n l i k e l y  by t h e   p a i r  (T,ld, T,2d). Hence i n  this  case 

it is  only t o  t h e   f o r m e r   p a i r   o u r   a t t e n t i o n  is t o  be focused. 

In  Class I1 each of   the  bounding  pairs  (T,la,  T,2d) and 

(T*ld'  T*2a 1, one   in   each   k ind  of t r a n s f e r ,  bounds a local 

min ima l   two- impu l se   t r ans fe r   t r a j ec to ry   i n   t ha t   k ind ,   and  

i n   t h e  search of an   absolu te  minimum, t h e   c o n s i d e r a t i o n  of 
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FIG. 7 TYPICAL PAIRS OF BOUNDING TRAJECTORIES 
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of   both  kinds is then   necessa ry .   In   e i t he r  case t h e  number 

of  bounding  pairs t o  be considered is no  more  than two. 

R e a l  complicat ions  can arise only when one or both  of QO1 and 

Qo2 are in   t he   nons imple   and /o r   un rea l i s t i c   r eg ions ,   where in  

more types  of the   op t ima l  arc p a i r s  may appear,  and more 

bounding t r a j e c t o r y   p a i r s  are t o  be considered.   Further  

d i scuss ions  w i l l  be found i n  t h e  n e x t   s e c t i o n .  
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V. Qual i ta t ive   Predic t ions   on   the   Minimal   mo-Impulse  
Transfer  

A. The Kind  and  Sense of t h e   T r a n s f e r  

For t he   t r ans fe r   be tween  t w o  t e rmina l   po in t s   s epa ra t ed  

by a c e n t r a l   a n g l e  0 < Y TT, t h e r e  i s  a d e f i n i t e   s e n s e  of 

mot ion   a round   t he   f i e ld   cen te r ,   a s soc ia t ed   w i th   each   k ind  

o f   t r a n s f e r .   I n   t h e   f o l l o w i n g  w e  w i l l  a r b i t r a r i l y   a s s i g n  

a p o s i t i v e   s e n s e  t o  t h e   s h o r t   t r a n s f e r ,   a n d  a nega t ive  

sense  t o  t h e   l o n g   t r a n s f e r .  I t  i s  clear t h a t   t h e  t w o  

t r a j e c t o r i e s   o f  a bounding  pair  (T, l ,   T,2) ,  as d e f i n e d   i n  

the   p receding   sec t ion ,  are of   the  same kind  and  sense,  and 

so i s  the  minimal   two-impulse  t ra jectory T,, bounded  between 

them. Thus,  whenever a bound ing   t r a j ec to ry   pa i r  i s  g iven ,  

the   k ind   and ,   hence ,   the   sense  of the  minimal  two-impulse 

t r a j e c t o r y  bounded i s  fixed.  Obviously  the  kind  and  sense 

of a bounding   t ra jec tory   pa i r   depend  on ly   on   those   o f   the  

o p t i m a l   a r c   p a i r ,   b u t   n o t   o n   t h e   p a r t i c u l a r   e n d p o i n t s  

de f in ing  it. 

A s  pointed  out   in   Reference  25,  it i s  i n t e r e s t i n g   t o  

note   that ,   whi le   the  sense  of   the  minimal   two-impulse 

t ransfer   a lways  agree  with  those  of   the t w o  bounding 

t r a j e c t o r i e s ,  it does   no t   necessa r i ly   ag ree   w i th   t hose   o f  

the two te rmina l   o rb i t s   even   though  they   have   the  same s e n s e -  
t 

'When t h e  t w o  t e r m i n a l   o r b i t s  are noncoplanar, it i s  
t o   b e   u n d e r s t o o d   t h a t   t h e   s e n s e   o f   m o t i o n   o f   e a c h   o r b i t  
r e f e r  t o  t h a t  of the p r o j e c t i o n   o f   t h e   o r b i t   o n   t h e   t r a n s f e r  
plane.  
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This   pecu l i a r  phenomenon stems from t h e   f a c t   t h a t   t h e  

s ta t ionary   one- impulse   t ransfer   t ra jec tory   does   no t   a lways  

ag ree   i n   s ense   w i th   t he   co r re spond ing   t e rmina l   o rb i t .  The 

p a r t i c u l a r  case i n  which   two  te rmina l   o rb i t s   o f   the  same 

sense  ca l l  f o r  a minimal  two-impulse t r a n s f e r   i n   t h e   o p p o s i t e  

s ense  i s  i l l u s t r a t e d   i n   R e f e r e n c e  25. 

B. Type of   the  Transfer   Conic  

A s tudy  of   the  hodograph  geometry  enables   one  to  

e s t ab l i sh   t he   fo l lowing   ru l e s   fo r   de t e rmin ing   t he   t ype   o f  

the  minimal  two-impulse t r a n s f e r   c o n i c   i n   t e r m s   o f   t h e  

bounding t r a j e c t o r i e s :  

1. T,, w i l l  be e l l i p t i c   i f  a t  least one  of T,l and T k 2  

i s  e l l i p t i c ,  and  none  of  them i s  hyperbol ic ;  

2. T,, w i l l  be h y p e r b o l i c   i f  a t  least one  of T,l and 

T,2 is  hyperbolic,   and none  of  them is e l l i p t i c ;  

3 .  T,, w i l l  be p a r a b o l i c   i f   b o t h  T,l and T,2 are 

parabol ic .  

Thus,   once  the  bounding  t ra jectory  pair  is  chosen, the type 

of  the  minimal  two-impulse  transfer  conic is uniquely 

determined  under   the  foregoing  three  condi t ions.  The only 

ambiguous case i s  t h a t   t h e  bounding t r a j e c t o r y   p a i r   c o n s i s t s  

of  one el l ipse  and  one  hyperbola ,   wherein  the  type  of  T,, 

is  indeterminate .  

The type  of each bounding  t ra jectory,  T,i, is of  course,  

determined by the   t e rmina l   cond i t ions .  Once t h e   t e r m i n a l  

po in t  Qoi is  loca ted   in   the   hodograph   p lane ,   the   reg ion  
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d i a g r a m s   i l l u s t r a t e d   i n   F i g u r e  5 w i l l  enable   one t o  t e l l  

immediately  the  type  of  T,i. 

F i n a l l y ,  it i s  t o  be   men t ioned   t ha t ,   wh i l e   t he  t w o -  

impulse minimum always agrees i n   t y p e   w i t h  i t s  t w o  bounding 

t r a j e c t o r i e s   o f   t h e  same type ,  it is n o t   n e c e s s a r i l y  so 

w i t h   t h e  t w o  t e r m i n a l   o r b i t s   o f   t h e  same t y p e .   J u s t   l i k e  

i n   t h e  case of k ind   and   sense ,   th i s  stems f r o m  t h e  f ac t  

t h a t  a one- impulse   min imal   t ransfer   t ra jec tory   does   no t  

a lways   ag ree   i n   t ype   w i th   t he   co r re spond ing   t e rmina l   o rb i t ,  

a s i tua t ion   found  in   Reference  20 .  Thus, f o r  minimal t o t a l  

impulse,  it is  p o s s i b l e   t h a t  two e l l i p t i c   o r b i t s  c a l l  f o r  

an   hype rbo l i c   t r ans fe r ;   and   t ha t  t w o  h y p e r b o l i c   o r b i t s ,   a n  

e l l i p t i c   t r a n s f e r .  

C.  The Real is t ic  and t h e   U n r e a l i s t i c   T r a n s f e r s  

Concerning  the  nature  of  the  minimal  two-impulse 

t r a n s f e r ,  real is t ic  o r   u n r e a l i s t i c ,   t h e   f o l l o w i n g   c r i t e r i a  

a r e   e v i d e n t :  

1. T,, w i l l  be rea l i s t ic  i f   b o t h  T,l and T,2 are 

r ea l i s t i c ;  

2. T,, w i l l  b e   u n r e a l i s t i c   i f   b o t h  T,l and T,2 are 

u n r e a l i s t i c .  

Thus  once a bound ing   t r a j ec to ry   pa i r  i s  found,   the   na ture  

of T,, is  de te rmined ,   un le s s   t he   bound ing   pa i r   cons i s t s   o f  

one r ea l i s t i c  and  one u n r e a l i s t i c ,   w h e r e i n   t h e   n a t u r e  of 

T,, i s  no t   a sce r t a ined .  The o p t i m a l   t r a n s f e r  arc p a i r  

under  Condition 2 ac tua l ly   r educes   t o   one   po in t   pa i r - - the  
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u n r e a l i s t i c  c r i t i ca l  one;   and  the t w o  bounding trajectores, 

T,l and T,2, bo th   co inc id ing  w i t h  t h e   u n r e a l i s t i c   p a r a b o l i c  

t r a j e c t o r y .  

I t  is t o  be noted that ,  while   the  two-impulse minimum 

i n  one  kind of t r a n s f e r  i s  u n r e a l i s t i c ,  there may e x i s t  a 

realist ic minimum i n   t h e   o t h e r   k i n d .   T h u s ,  it i s  sometimes 

adv i sab le  t o  examine t h e  b o u n d i n g   t r a j e c t o r y   p a i r s   i n   b o t h  

kinds.   This  i s  necessary when t h e  two f i r s t  minimal  one- 

impu l se   t r ans fe r  trajectories, and T,2a, are of   unl ike 

k inds ,   for   example ,   the   condi t ion   under  Class 11, Sect ion  

IV-B ( l a s t  paragraph) .   In   such  a case it is  q u i t e   p o s s i b l e  

t o  have  one rea l i s t ic  a b s o l u t e  minimum i n  one  kind,  and  one 

u n r e a l i s t i c  local minimum i n   t h e   o t h e r .  The foregoing 

cr i ter ia  app ly   t o   e i t he r   k ind ,   o f   cou r se .  

T* l a  

Obviously, t h e  n a t u r e  of each bounding   t ra jec tory  i s  

determined by the   t e rmina l   cond i t ions .   Fo r  two f i x e d  

t e rmina l   po in t s ,   such  a de te rmina t ion  may be r e a d i l y  made 

by using  the  hodographic   region  diagram  in   Figure 5 once 

the t e r m i n a l   v e l o c i t y   p o i n t  QO1 i s  loca ted .  I t  i s  clear 

from  such  diagrams  that   Condition 1 i s  s a t i s f i e d   f o r   b o t h  

kinds when QO1 and Q O 2  are b o t h   i n   t h e i r   r e a l i s t i c   r e g i o n s ;  

and  Condition 2 i s  s a t i s f i e d   f o r   b o t h   k i n d s  when they are 

b o t h   i n   t h e i r   d o u b l e   u n r e a l i s t i c   r e g i o n s .  I n  t h e  l a t t e r  case, 

there e x i s t s  no rea l i s t ic  abso lu te  minimum s o l u t i o n  of t h e  

problem,  and the s o l u t i o n s   i n   b o t h   k i n d s  are i n d e f i n i t e .  
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D. The  Multiplicity of the  Minimal  Solutions 

By  multi-minimum we mean  distinct  transfer  trajectories 

giving  the  same  local  minimal  total  impulse f,, under  the 

same  terminal  conditions.  Evidently,  no  multi-minimum  in 

the  same  kind  of  transfer can  be expected  unless  there  are 

multiple  pairs  of  bounding  trajectories  in  the  same  kind  for 

choice,  corresponding  to  the  multiple  optimal  transfer  arc 

pairs  of  that  kind.  Thus,  a  pre-requisite  for  the  occurrence 

of a  multi-minimum  of  one  kind  is  that  at  least  one of the 

terminal  velocity  points, QO1 and Q,,, is  in  its  nonsimple 

region.  Although  there  are  six  combinations for the  optimal 

arc  pairs  of  the  basic  type,  as  given  in  Section IV-A, 

studies  of  the  distributions  of  the  orthopoints  in  the  constrain- 

ing  hyperbola  show  that  there  can  be  no  more  than  three 

different  arc  pairs  of  the  same  kind.  Consequently,  no 

multiplicity  higher  than  three  can  be  expected  for  the  same 

kind  of  transfer.  Details of such  studies  are  given  in  Appendix 

F, from  which  the  following  assertions  may  be  made: 

Concerning  Multi-Minimum of the  Same  Kind. 

1. No multi-minimum  may  arise  when  both  terminal 

velocity  points  are  in  their  simple  regions. 

2. When  one  and  only  one  of  the  terminal  velocity 

points  is  in  its  nonsimple  region,  there  exists 

at  most  a  double  minimum. 

3 .  No triple  minimum can  be expected  unless  both 

terminal  velocity  points  are  in  their  nonsimple 

regions. 
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4 .  N o  mul t ip l i c i ty   h ighe r   t han   t h ree   can   be   expec ted  

under   any  terminal   condi t ions.  

The ac tua l   ex i s t ence   o f  a double minimum of t h e  same kind 

h a s   b e e n   i l l u s t r a t e d   i n   R e f e r e n c e  25. However, whether a 

t r i p l e  minimum of t h e  same k ind   ac tua l ly   ex i s t   has   no t   been  

a sce r t a ined .  A proof  of i t s  ex i s t ence  or  nonexistence  would 

b e   o f   t h e o r e t i c a l   i n t e r e s t .  

Now cons ider ing   bo th   k inds   o f   t ransfers ,  it i s  ev iden t  

t h a t  a double minimum is  poss ib le   even  when both   t e rmina l  

v e l o c i t y   p o i n t s  are i n   t h e i r   s i m p l e   r e g i o n s ,   s i n c e   t h e r e  is  

one   loca l  minimum i n   e a c h   k i n d   i n   t h i s  case. Maximum mult i -  

p l i c i t y  w i l l  be   h igher  when one or  both   o f   the   t e rmina l  

v e l o c i t y   p o i n t s  are in   t he i r   nons imple   r eg ions .  However, as 

shown i n  Appendix F ,  t h e   t o t a l  number of opt imal  arc p a i r s  

of   both  kinds  cannot   exceed  four   under   any  f ixed  terminal  

condi t ions .  Thus a quadruple minimum of  mixed  kinds  can  be 

expected a t  most. A study  of  Appendix F enables  one t o  

f u r t h e r  assert the  followi.ng: 

Concerning Multi-Minimum of Mixed Kinds "_ . . ~ . ... 

1. When bo th   t e rmina l   ve loc i ty   po in t s  are i n   t h e i r  

s i m p l e   r e g i o n s ,   t h e r e   e x i s t s  a t  most a double 

minimum. 

2.  When one  and  only  one  of  the  terminal  velocity 

p o i n t s  i s  i n  i t s  nons imple   reg ion ,   there   ex is t s  

a t  most a t r i p l e  minimum. 
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3 .  When both terminal  v e l o c i t y   p o i n t s  are i n   t h e i r  

nons imple   reg ions ,   there   ex is t s  a t  most a quadruple 

minimum. 

4 .  N o  m u l t i p l i c i t y   h i g h e r   t h a n  4 can  be  expected  under 

any  terminal   condi t ions.  

As example of a quadruple  m i n i m u m ,  c o n s i s t i n g  of t w o  

double  minima1,one in   each   k ind ,  a l l  w i t h   t h e  same minimal  

f,,, is  shown in   Re fe rence  25. 

E. The I d e n t i c a l  Minimal  Two-Impulse  and  Minimal One- 
Impulse  Solut ions 

It is  obv ious   t ha t  when t h e  two t r a j e c t o r i e s  of a 

bounding  pair  becomes coincident,   the  two-impulse  minimal 

t r a n s f e r   t r a j e c t o r y  bounded  between w i l l  n e c e s s a r i l y  

coincide  with  them, t h a t  i s ,  

T,, = T*1 = T,2 

Thus,  the  minimal  two-impulse  solution w i l l  b e   i d e n t i c a l  t o  

t h e  two minimal  one-impulse  solutions,   one  with  respect t o  

t h e   i n i t i a l   t e r m i n a l   i m p u l s e ,   a n d   t h e   o t h e r ,   t h e   f i n a l  

terminal  impulse,  when they  themselves are i d e n t i c a l .   T h i s  

can also b e   e a s i l y   s e e n  by r e f e r r i n g  t o  the   bas ic   govern ing  

equations  (5)  and (12). I n   f a c t ,   t h e   s i m u l t a n e o u s   v a l i d i t y  

of  any t w o  of t h e   t h r e e   e q u a t i o n s   a s s u r e s   t h e   v a l i d i t y  of t h e  

th i rd   one .  Thus w e  conclude: 

The coincidence of any t w o  of t h e   t h r e e  trajectories, 

T,l, T,2 and T,, imp l i e s   t he   co inc idence  of a l l  t h ree .  

The o p t i m a l   t r a n s f e r  arc p a i r  now ac tua l ly   r educes  t o  merely 
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a  transfer  point  pair.  The  unrealistic  case  mentioned 

under  Heading C offers  a  special  example  of  this  case. 

An analytic  condition  for  the  occurrence  of  such 

identical  solutions,  as  deduced  in  Reference  25,  is 
2 

K[ (Mo 2"o 1 2- (No  2-No 1 2I = (Mo 2"o 1 (NO 2-No 1 

(M02N01"01N02)2  (15) 

which  may  be  written  symbolically 

F (r'l  ,F2 ,GO 1,302) = 0 (16) 

Thus  there  is  a  definite  relation  to  be  satisfied  by  the 

four  terminal  vectors,  r1  ,r2 , V O ~  and $02 in  order  that  the 
+ + +  

two-impulse  minimization  and  the  one-impulse  minimizations 

at  the  initial  and  the  final  terminals  separately  will  yield 

the  same  trajectory.  Such  a  relation  will  be  referred  to 

as  the  coincidence  condition  for  the  two-impulse  minimization 

and  the  two  one-impulse  minizations  for  the  two-terminal 

transfer. It can  be  shown  that  the  condition  given  by 

Equation  (15)  is  not  only  necessary,  but  also  sufficient. 

It  is  interesting  to  note  that  Equation  (15) isi in  particular, 

satisfied  by 

M,O1 = MO2 and NO1 = NO2 (17 1 

In  the  case  of  apside-to-apside  transfer,  Mol = M02 = 0, 

Equation  (17)  lead  to 

Thus,  a  sufficient  condition  for  the  coincidence  of T,l,  T,2 

and T,, is  that  the  base  triangle  determined  by  the  two 
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p o s i t i o n   v e c t o r s ,  and the   ve loc i ty   t r i ang le   de t e rmined  by the 

two i n - p l a n e   t e r m i n a l   o r b i t   v e l o c i t i e s  are s imi la r   and  

orthogonal.  

F i n a l l y ,  it i s  to   be   no ted   t ha t ,  i n  t he   p rev ious   a s se r t ion  

on t h e   c o i n c i d e n c e   o f   t h e   t h r e e   t r a n s f e r   t r a j e c t o r i e s ,  T,l, 

T,2 and T,,, it has   been   t ac i t l y  assumed that  t h e  two te rmina l  

impulse  funct ions,  fl and f2, a r e   b o t h   d i f f e r e n t i a b l e .   T h i s  

assertion  and the coincidence  condition,  Equation (15) a l l  

break down  when f i  and f i  do   no t   bo th   ex is t .  Such  a case 

may be c a l l e d   s i n g u l a r .   I n  a s i n g u l a r   c a s e ,  it i s  p o s s i b l e  

t o  have T,, coincident   with  one of T,l and T,2, which  do  not 

themselves  coincide. The s p e c i a l  case wherein  one of t h e  

te rmina l   o rb i t s   passes   th rough  bo th   t e rmina l   po in ts ,  i s  a 

s ingular   one.  For example, i f  t he  i n i t i a l   t e r m i n a l   o r b i t  

a l so   pas ses   t h rough   t he   f i na l   t e rmina l   po in t ,  then  t h i s   o r b i t  

i t s e l f  i s  T,l, and w e  may have T,, = T*1 t T*2* 
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VI.  Quantitative  Predictions  on  the  Minimal  Two-Impulse 

Transfer 

So far  the  predictions  have  been  made on the  qualitative 

basis.  Quantitative  predictions on the  various  trajectory 

variables  and  elements  are  now  in  order.  In  the  following, 

the  upper  and  lower  bounds  of  these  trajectory  quantities 

will  be  established  by  using  the  bounding  trajectory  pair. 

A.  The  Position  Vector 

Consider  a  pair  of  trajectories  in  a  two-terminal 

Keplerian  trajectory  family.  It  is  obvious  that  the  one 

with  a  higher  initial  path  angle  (with  reference to the  local 

transverse  direction)  will  remain  higher  in  radial  distance 

on  any  intermediate  radius  vector  throughout  the  trajectory 

range;  for,  otherwise,  the  two  trajectories  will  intersect 

at  least  at  one  intermediate  point  between  the  two  common 

terminal  points,  a  fact  impossible  for  two  distinct  Keplerian 

conics.  Such  an  observation  enables  one  to  classify a pair  of 

bounding  trajectories  as  high  and  low,  and  indicate  them  by 

the  subscripts H and L respectively.  Thus,  instead of T,l 

and  T,2, we  write T,L and T,H. Quantities  pertaining  to  the 

high,  or  the  low  trajectory  may  be  indicated  in  the  same  way. 

Such  notatioris  will  be  employed  in  the  following  formulations 

whenever  it  is  convenient. 
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The  existence  of  an  interior  point  pair  on an optimal 

transfer  arc  pair  for  the  minimal  two-impulse  solution  (see 

Section I V  and  Appendix E )  implies  that  such  a  minimal 

trajectory is bounded  between  the  two  trajectories of the 

bounding  pair in the  position  space.  This  assertion  follows 

directly  from  the  preceding  argument,  and  will  become  more 

clear  when  we  come  to  the  terminal  path  angles  under  the 

next  heading.  Mathematically,  we  may  express  this  fact  by 

where  the  three  radial  distances  r*L, rxH, and r** are  taken 

along  the  same  radius  vector  between  the  two  terminal 

position  vectors  r1  and  r2  as  shown  in  Figure  8(a)  (where 

equality  signs in  the  foregoing  formula  hold  only  on  the 

terminal  radius  vectors ( A 8  = 0, +). However, if  they do 
hold  on  some  intermediate  radius  vector,  they  will  hold on 

every  such  radius  vector,  and  the  three  trajectories, T,L, 

-f  -f 

T*H  and T,, will  coincide,  a  case  in  which  the  minimal 

two-impulse  solution  and  the  two  minimal  one-impulse 

solutions  are  identical, as presented  in  Section V-E.  This 

special  case  will  be  excluded  in  the  following  analysis. 

B. The  Terminal  Quantities 

Direction  of  Departure  and  Arrival 
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(b) HODOGRAPH  PLANE 

FIG. 8 THE MINIMAL TWO- IMPULSE TRANSFER TR4JECTORY AND ITS BOUNDING TRAJECTORIES 



Consider  a  typical  optimal  transfer  arc  pair as shown 

in  Figure 8(b), the  geometry  shows  clearly  that  the  three 

path  angles @,,, @,,, and at the  initial  point  satisfy 

the  inequality 

which  is,  in  fact,  the  basis  for  the  Inequality (19) 

Thus,  the  high  trajectory  of  a  bounding  pair  has  also  a  high 

initial  path  angle,  and  vice  versa.  However, at the  final 

terminal  point  the  roles  of  the  high  and  low  trajectories 

are  reversed,  and we have 

which  is  also  evident  from  Figure 8 ( b ) .  It  is  to  be  noted 

that,  although  the  reference  here  is  made  to  Figure 8 ( b ) ,  in 

which  a  transfer  arc  pair  of  short  kind is shown,  Inequalities 

(20-1,2)  hold  equally  well  for  the  long  kind  of  transfer,  if 

we always  measure  the  path  angle Oi from  the  transversal 

direction  in  the  direction  of  motion,  hence,  limiting  it  to 

-7 < @i  2 71 
< - in  each  kind.  These  inequalities  show  that  a 

minimal  two-impulse  transfer  trajectory  is  bounded  by  its 

bounding  trajectory  pair in  the  directions Of departure  as 

71 

well as arrival. 
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The _ _ _ ~  Transfer  Velocities  and  Their  Components 

In view  of  Godal's  compatibility  condition,  Equation ( 4 ) ,  

the  chordal  and  radial  components of the  terminal  transfer 

velocities  change  monotonically  along  the  constraining  hyper- 

bola. Thus,  with  the  aid  of  Figure 8 ( b ) ,  we  deduce 

v ~ * ~  < vR** < ''R*H (21) 
and 

vC* H < v  c** < VC*L  (22) 

From  Inequality ( 2 2 )  we  further  deduce  for  the  transversal 

since Vei is  proportional  to  V No such  simple  statement  is C '  

available  for  the  other  component  Vr  of  the  coordinate  pair 

(Vr, V,) as  it  is  more  involved.  From  Inequalities ( 2 1  to  23) 

we  see  that  each  of  the  three  terminal  transfer  velocity 

components VR**, Vc** I and (Vei) * *  is  bounded  between  the 
corresponding  components  of  the  bounding  trajectory  pair. 

HoweverI  this  is  not  always  true  for  the  resultant  transfer 

velocities,  as  it  will  be  seen  below. 

In dealing  with  the  resultant  velocity  at  either  terminal, 

it  is  important  to  note  that,  for  the  transfer  between  two 

fixed  terminal  points,  there  exists  an  overall  minimum  veloc- 

ity  at  each  terminal,  given  by  the  minimum  energy  points, 

which  is  the  vertex of the  branch  of  the  terminal  constraining 

hyperbola  (see  Table C - 2 ,  Appendix  C). Thus, it  is  essential 
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t o   d i s t i n g u i s h   w h e t h e r   t h e   o p t i m a l   t r a n s f e r  arc c o n t a i n s   t h e  

minimum ene rgy   po in t  o r  not .  A s tudy of the  hodograph geome- 

t ry   enab le s   one  t o  deduce   t ha t ,  when the   op t ima l  arc con ta ins  

no minimum energy  point ,  

*L ' V * * ' V * H  i f  V kL < *H 
i i i i (i = 1 . 2 )  ( 2 4 )  

*H i f  V *L > v  ' V * * < V * L  *H i i i i 

I n  case it does  contain  such a p o i n t ,  w e  r e p l a c e   t h e  lower 

bound  by (Vi) min. which  has  the  magnitude, 

- Ai - - - J 2 '  t a n  - JI t a n  5 i 
(vi) min. r 2 2 

- 
i 

The Terminal  Velocity  Impulses 

With r e fe rence  t o  Fig.  8 (b) , i f  i s  e v i d e n t   t h a t  

(AVpl) C (AVpl) < (AVpl) (26 -1 )  
"1 ** *2 

(AVp2) < (AVp2) < (AV (26-2)  
"2 ** P2 *1 

where  the AVp ' s  are the   in -p lane   ve loc i ty   impulses .  Going  from 

these  in-plane  components t o  t h e  r e s u l t a n t s  i n  the  noncoplanar  

case, w e  n o t e   f i r s t   t h a t   t h e   o u t - o f - p l a n e   t e r m i n a l   v e l o c i t y  

components, (VoNi) if present ,   do   no t  a l te r  t h e   l o c a t i o n   o f  

the  minimal  2-impulse  solution  in  the  hodograph  plane;  and 

second,   tha t   under   f ixed   te rmina l   condi t ions ,   such  a component 

is  a cons t an t  a t  each  terminal,   hence,  i t s  e f f ec t   on   each  

ve loc i ty   impulse  a t  t h e  same te rmina l  i s  t o  i n c r e a s e  i t  by a 

cons t an t  component i n   acco rdance   w i th  
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fi = J(*VPi) + VONi  2 

Consequently,  the  preceding  inequalities  hold  also  for  the 

resultant  velocity  impulses  at  each  terminal: 

1*1 < fl** < f1*2 

2*2 < f2** < f2*1  (28-2) 

(28-1) 

from  which  we  obtain  immediately  by  addition, 

1*1 + f2*2 < f** < f1*2 + f2*l (29 1 

Thus,  each  of  the  two  terminal  velocity  impulses  and  their 

sum  required  for  a  minimal  2-impulse  transfer  are  well  bounded, 

with  their  upper  and  lower  bounds  given  by  the  two  minimal 

1-impulse  solutions. In fact,  two  smaller  upper  bounds  for 

f,, can  be  found  to  be 

f*l = fl*l + f2*l  (30-1) 

f*2  fl*2 + f2*2  (30-2) 

where f,l is  the sun?  of  the  two  terminal  impulses  required on 

T*l, and f*2,  that  on T,2, since 

f** < f*l  (31-1) 

f** < f*2  (31-2) 

by  definition. That  the  quantities f,l and f,2 are  both  less 

than  the  upper  bounds in the  Inequality  (29)  can  be  easily 

seen  since,  again  by  definition, we have 

1*1 < fl*2  f2*2 < f2*l (32) 
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C. The  Trajectory  Elements 

The  Angular  Momentum  and  the  Semilatus  Rectum 

Noting  that  the  angular  momentum h is  related  to  the 

chordal  component Vc of a  terminal  transfer  velocity  by 

h = VCd ( 3 3  1 

and that  the  distance  d  is  a  constant  for  the  transfer  between 

two  fixed  terminal  points, we obtain  immediately  from  Inequal- 

ity ( 2 2 )  I 

h*H < h** < h*L ( 3 4 )  

which  also  implies  that 

in  view  of  the  orbital  relation, 

where 7 is  the  semilatus  rectum  of  the  trajectory  conic. 

The  Orbital  Energy  and  the  Semimajor  Axis 

From  the  Vis  Viva  Integral, 

we see  that,  to cornpare  the orbital  energies of different 

trajectories  through  the  same  terminal  point, we need  only  to 

compare  the  magnitudes of their  velocities.  Here  again  the 

presen.ce  or  absence  of  a  minimum  energy  point in  the  optimal 

arc  under  consideration  is  of  importance,  and  inequalities 

sinilar  to  those  for  the  transfer  velccities ma.y  be written 
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for  t h e  orb i ta l  energy as fol lows:  

In   t he   absence   o f   t he  minimum energy  point ,  

I n  case such a p o i n t  i s  p resen t ,  w e  r e p l a c e   t h e  lower bounds 

i n   t h e   p r e c e d i n g   i n e q u a l i t i e s  by kmin which, i n  terms of 

the   t e rmina l   parameters ,  i s  given by 
. I  

- 2?J 
kmin. r + r  + C  " 

1 2 
(39 1 

The semimajor  axis (a)  of a t r a j e c t o r y   c o n i c   i n  a given 

Newtonian f i e l d  depends  only on the   o rb i t a l   ene rgy   t h rough  

t h e   r e l a t i o n ,  

However, while  k changes  continuously  along a 

hyperbola,   "a"  changes  discontinuously a t  t h e  

( 4 0  1 

cons t r a in ing  

c r i t i c a l  p o i n t  

Q ; it a l s o   h a s  a l o c a l  minimum i n   t h e   e l l i p t i c   p o r t i o n  a t  
* 

t h e  minimum energy  point.   Thus,  t o  establish the upper  and 

lower  bounds for   the  semimajor   axis   of  a minimal  2-impulse 

t r a n s f e r   t r a j e c t o r y ,  it is  e s s e n t i a l  t o  examine  whether  the 

opt imal  arc conta ins  a minimal  energy  point,  or a c r i t i ca l  

poin t .  When bo th   po in t s  are absen t ,  w e  have 

a *L < a** < a*H i f  a*L < a *H 
(41) 

a < a** < a i f  a > a  *H *L *L *H 

Whenever the   op t ima l  arc conta ins  a c r i t i c a l  p o i n t ,  w e  r ep lace  
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t he   uppe r   bounds   i n   t he   p reced ing   i nequa l i t i e s   by  a. When 

it con ta ins   t he  minimum energy   po in t   a lone ,  w e  r e p l a c e   t h e  

lower bounds  by t h e   e l l i p t i c  minimum a ,  given by 18 

amin. = %(r, + r2 + 1) ( 4 2 )  

However, when i t  con ta ins   bo th   po in t s ,   wh i l e  w e  still r e p l a c e  

the   uppe r   bounds   i n   t he   p reced ing   i nequa l i t i e s  by a, care 

must  be  taken  concerning  the lower bound, s ince   an   hyperbol ic  

semimajor  axis may be w e l l  smaller t h a n   t h e   e l l i p t i c  minimum. 

Thus, i n   t h i s  case, w e  r e p l a c e   t h e  lower bounds i n   I n e q u a l i -  

t ies ( 4 1 )  by amin only when these  bounds are g r e a t e r  

than  amin. The foregoing   ana lys i s  shows t h a t ,   w h i l e   t h e  

semimajor ax i s   o f  T,, i s  bounded when T,l and T,2 a r e   b o t h  

e l l i p t i c ,  o r  both   hyperbol ic ,  or one of them i s  pa rabo l i c ,  

it is  not   necessary  so when one  of  them i s  e l l i p t i c ,  and  the 

o t h e r  i s  hyperbol ic .  

The E c c e n t r i c i t y  Vector 

L ike   t he   t r ans fe r   ve loc i ty   and   o rb i t a l   ene rgy ,   t he re  

e x i s t s   i n  a 2- te rmina l   t ra jec tory   fami ly  

f o r   t h e   n u m e r i c a l   e c c e n t r i c i t y ,   g i v e n  by 

- Ir1 - r 2 l  
k i n .  

- 
R 

a n   o v e r a l l  minimum 
18 

( 4 3 )  

The po in t   on   t he   cons t r a in ing   hype rbo la   co r re spond ing   t o   t h i s  

l e a s t   e c c e n t r i c   t r a n s f e r   t r a j e c t o r y  i s  c a l l e d   t h e  least  

e c c e n t r i c i t y   p o i n t ,   a n d  it can be shown t h a t   t h e r e  i s  such a 
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point   on  each  branch  of  a te rmina l   cons t ra in ing   hyperbola ,  

l oca t ed  as shown i n  F igure  C-1. Thus, t o  e s t a b l i s h   t h e   u p p e r  

and lower bounds for  the   numer i ca l   eccen t r i c i ty  of t h e  

minimal   2 - impulse   t ransfer   t ra jec tory ,  it i s  e s s e n t i a l  t o  

examine  whether  the  optimal arc under   cons idera t ion   conta ins  

t h i s  least  e c c e n t r i c i t y   p o i n t  or not .   S imi la r  t o  the   i nequa l i -  

t ies deduced   fo r   t he   t e rmina l   t r ans fe r   ve loc i ty   and   t he   o rb i t a l  

energy, w e  have i n   t h e   a b s e n c e  of t h e  least  e c c e n t r i c i t y   p o i n t ,  

I n  case t h e  arc c o n t a i n s   t h i s  l eas t  e c c e n t r i c i t y   p o i n t ,  w e  

r e p l a c e   t h e  lower bounds i n   t h e   p r e c e d i n g   i n e q u a l i t i e s  by 

E min. 
Furthermore, a study  of  the  hodograph  geometry shows t h a t  

no t   on ly   t he   numer i ca l   eccen t r i c i ty   o f  T,, i s  so bounded,  but 

also t h e   d i r e c t i o n   o f  i t s  eccent r ic i ty   vec tor   which  i s  i n   t h e  

d i rec t ion   of   the   aps ida l   ax is .   Denot ing   the   angle   be tween 

t h e   e c c e n t r i c i t y   v e c t o r  o f  a t r a n s f e r   t r a j e c t o r y  and  the 

t e r m i n a l   p o s i t i o n  vector by e i, w e  have i 

Here t h e  8 ' s  are the   t rue   anomal i e s  o f  t h e   t e r m i n a l   p o i n t  Qi 

measured  on t h e  three t r a j e c t o r i e s ,  T,L, T,H, and T,, (see 

Fig.  8 ) .  So f a r  as t h e   b o u n d i n g   d i r e c t i o n s   o f   t h e   e c c e n t r i c i t y  

49 



vectors  are  concerned, no reference  to  the  least  eccentricity 

point  is  necessary. 

D. Time of Flight 

It can  be  shown  that  the  time of flight  for  the  transfer 

between  two  fixed  terminal  points  is  a  single-valued  increas- 

ing  function of the  initial  path angle.. Thus,  directly  from 

Inequality  (20 -1) we deduce  that 

At,L < At** < At,H (46) 

In  addition  to  the  few  items  presented  above,  the  upper 

and  lower  bounds of many  other  trajectory  quantities  may  be 

deduced in a  similar  way.  However, no such  exhaustive  analysis 

will  be  attempted  here. As a  final  remark,  the  following 

situation  is  worth  mentioning: 

When  the  two  quantities,  say X,1 and X,2 pertaining  to  a 

bounding  trajectory  pair, T,l and T,2, respectively,  bound 

the  corresponding  quantity X,, of  the  minimal  2-impulse 

trajectory T**, then  the  condition X,1 = X,2 implies  that 

a case in  which  the  minimal  2-impulse  solution  and  the  two 

minimal  1-impulse  solutions  are  identical.  However,  this  is 

not  necessarily  true  when an absolute  bound Xabs, upper or 

lower,  is  present  unless X,1 = X,2 - - Xabs. 
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For example, it is q u i t e   p o s s i b l e   t h a t  a p a i r  of bounding 

trajectories o f   t he  same e c c e n t r i c i t y  bounds a T,, of less 

e c c e n t r i c i t y   i f   t h e   o p t i m a l  arc c o n t a i n s   t h e  least  eccen t r i c -  

i t y   p o i n t .  When t h i s  i s  the case, w e  o b s e r v e   t h a t   t h e  t w o  

q u a n t i t i e s  X,1 and X,2, be ing   equa l   bu t   d i s t i nc t   f rom Xabs, 

form  an  upper  bound i f  Xabs i s  an   absolu te  lower bound,  and, 

a lower  bound i f  Xabs i s  an  absolute   upper   bound,   and  that  

they  form  no  bound i n   t h e   p r e s e n c e  of both  absolute   upper  

and lower bounds. 

51 





I 

V I I .  The Case of  180°  Transfer 

So f a r   t he   ana lys i s   has   been   based  on the  assumption  of 

0 < I) < 8 .  I n  t h e   l i m i t i n g  case of $ = 71, a l though  the  

s t a t i o n a r i t y  Eqs. ( 6 )  and  (13)  no  longer  apply,  the  geometric 

ana lyses  i n  Sec t ions  I11 and I V  are still va l id ,   and  a l l  t h e  

p reced ing   qua l i t a t ive   and   quan t i t a t ive   p red ic t ions  still hold.  

I n  f a c t ,   t h e   s i t u a t i o n  i s  much s i m p l e r   t h a n   i n   t h e  

gene ra l   ca se ,  as the   ve loc i ty   cons t r a in ing   hype rbo la   fo r   each  

te rmina l  now degene ra t e s   i n to  two s t r a i g h t   l i n e s   b o t h   p a r a l l e l  

t o   t h e   l i n e  of te rmina ls  Q1Q2, i t s  evolu te   d i sappears ,   l eav ing  

the  hodograph  plane  consis t ing  of   only  the  s imple  region,   and  the 

t r a n s f e r  arc p a i r  now becomes a p a i r  of  two s t r a i g h t   l i n e  

segments. A s  consequences  of  such  simpler  hodograph  geometry, 

and in   l i ne   w i th   t he   p reced ing   gene ra l   conc lus ions ,   t he  t w o -  

impulse   180°   t ransfer   p resents  some p a r t i c u l a r   f e a t u r e s  as 

fol lows : 

1. There i s  one  and  only  one  optimal  transfer arc p a i r ,  

hence ,   one   and   on ly   one   bounding   t ra jec tory   pa i r ,   in   each  

sense  of t r ans fe r   ( t he   d i s t i nc t ion   be tween   sho r t  and  long 

t r a n s f e r s  now ceases t o   e x i s t ) .  

2. N o  multi-minimum f o r   t h e   t r a n s f e r   i n   t h e  same sense 

is poss ib l e ;  and t h e r e   e x i s t s  a t  most a double minimum of 

oppos i te  senses (direct   consequence of i t e m  1). 

3 .  The opt imal   condi t ion  for   minimal   two-impulse  t ransfer ,  

Eq. (5) , r educes   t o  
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s i n  y1 = s i n  y 2 ( 4 7 )  

fo r  t h e  180' case. Here y (i = 1,2) i s  t h e   p a t h   a n g l e  of 

the veloci ty- increment  vector AVi w i th   r e f e rence  t o  t h e   l o c a l  

r a d i a l   d i r e c t i o n ;   h e n c e ,  Eq. ( 4 7 )  expres ses   t he  Law of Equal 

Slope. 

i 
-+ 

4.  The co inc idence   condi t ion   reduces   to   s imple  

5. I n   c o n t r a s t   w i t h  t h e  non-180' t r a n s f e r ,   t h e  t w o  
+ 

p o s i t i o n   v e c t o r s ,  r1 and r2 ,  now be ing   co l l i nea r ,   do   no t  

d e t e r m i n e   t h e   o r i e n t a t i o n  of t h e   t r a n s f e r   p l a n e .  Hence 

t h i s   o r i e n t a t i o n  i s  open t o   c h o i c e .  

+ 

F i n a l l y ,  it should be noted   tha t ,   whereas   no   ana ly t ic  

s o l u t i o n   i n  closed form i s  p o s s i b l e   f o r   t h e   m i n i m a l  t w o -  

i m p u l s e   t r a n s f e r   i n   t h e   g e n e r a l  case, such a s o l u t i o n  does 

e x i s t   i n   t h e  180' case. For such a so lu t ion   and  t h e  f u r t h e r  

minimization of t h e  t o t a l   v e l o c i t y   i m p u l s e  by opt imiz ing   the  

o r i e n t a t i o n  of t he  t r a n s f e r   p l a n e ,  the reader may consu l t  

Reference 27.  
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VIII.  Numerical  Examples 

To verify  the  preceding  predictions  two  sets of numerical 

examples  have  been  worked  out. The  terminal  conditions  assumed 

and  the  corresponding  transfer  geometry  are  shown  in  Table 1. 

Set A consists  of  the  transfers  from a circular  orbit  to  a 

series  of  coplanar,  coaxial,  and  similar  elliptic  orbits  of 

the  same  eccentricity 3/4 but  varying  size. The  point of 

departure  on  the  circular  orbit  is,  in  each  case, at 6 0 °  from 

the  point of arrival,  which  is  the  apocenter  of  the  target 

ellipse.  Both  the  initial  and  final  orbits  are  assumed  to  be 

in  the  same  sense  of  motion.  Examples of set B are  the  same 

as  those  of  set A, except  that  the  final  orbits  are  a  series 

of similar  hyperbolas  of  the  same  eccentricity 5 / 4 ,  and  that 

the  point  of  arrival  is  the  pericenter  of  the  target  hyper- 

bola  in  each  case. In  each  set of examples,  the  absolute 

minimal  2-impulse  solution  for  T**,  and  the  two  minimal 1- 

impulse  solutions  defining  the  bounding  trajectory  pair, T,l 

and T*2,  are calculated  for  fixed  values of  the  distance  ratio 

n, ranging  from  0.20  to  2.0. The  principal  results  are  graphi- 

cally  depicted in  the  nondimensional  form  in  Figs. 9 to 14. 

Tabulated  values  are  found in  Appendix G ,  and  Some 

numerical  results of particular  interest  are  summarized in 

Table 1. 

From  these  results,  it  is  seen  that  each of the  three 

principal  trajectory  parameters, Vc, VR and h, calculated  for 
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TABLE 1. NUMERICAL  EXAMPLES  OF  THE  MINIMAL  TWO-IMPULSE  ORBITAL  TRANSFER 

TRANSFER  GEOMETRY 

TERMINAL  CONDITIONS 

Orbital  Eccentricities 

Velocities 

Radial  Distances 

Angle of Separation 

Xinimal  Total  Impulse, 

pistance  Ratio  for 

CIRCLE-TO-ELLIPSE 

INITIAL 

El = 0 

vol = 1 

r 1 

FINAL 

E2 = 0.75 

v o 2  = 0.5 

$ 0 2  = 0 

r2 = nr 1 

@ = 60" 

= 0.5 @ n = 1.0 

n = 0.630 
C 

(B) 

CIRCLE-TO-HYPERBOLA 

INITIAL 

El = 0 

v = 1  01 

$01 = 0 

r 1 

FINAL 

E 
2 

02 

= 1.25 

v = 1.5 

r2 = nrl 

= 60" 

= 0.5 @ n = 1.0 

n, = 1.31 

For detailed  tabulated  values,  see  Appendix G; for  graphs,  see  Figs. 9 to 14 
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T,, is  indeed  bounded  between  the  corresponding  quantities 

for  the  two  bounding  trajectories, T,l and T,2, as predicted 

by  the  Inequalities  (21, 22, and  34).  (See  Figs. 9 to 11). 

Also,  the  minimal  total  velocity  impulse  required 

for  the  transfer  is  bounded  between  its  upper  and  lower 

bounds  as  predicted  by  Inequality  (29)  (See  Fig. 12). 

To compare  the  total  velocity  impulses  required  for  the 

transfers  along  the  three  trajectories, T,l, T,2, and T,,, the 

values of fxl, f,2, and f,, are  found  as  shown  in  Fig.  13; 

and  the  relative  saving in  the  total  velocity  impulse  by 

2-impulse  minimization  over  the  minimization  of  each  terminal 

impulse  is  calcualted  from 

A f* 1 f*l - f** 
" - 
*1 *1 

Af * 2  f*2 - f** 
*2  f*2 

- =  

(49-1) 

(49-2) 

and  graphically  shown  in Fig. 14.  From  these  plottings 

it  is  seen  that  the f,, graph  indeed  remains  below  those  of 

f,l and f,2, as predicted  by  Inequalities  (31-1,2),  and  that 

the  savings Af,l and Af,2 are  positive  throughout,  justifying 

the  two-impulse  minimization. 

In  addition  to  the  foregoing  preliminary  observations, 

the  following  are  worth  noting: 

1. For each  of  the  trajectory  parameters, Vc, VR, and h, 

calculated  here,the  three  curves  for  the  trajectories T,*, 

T,l and T,2, intersect at a  common  point,  indicating  the 
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coincidence of Tkl ,  T,2 and T,,. The same s i t u a t i o n s  are 

found i n   t h e   g r a p h s  of f,, and i ts  upper  and lower bounds as 

shown i n   F i g s .  12, where   the   th ree   curves  €*,, f,l and €,2 

touch  each  other  a t  t h e i r  common po in t .  The va lues  of n 

a t  t h e  common po in t s   g iven  by the   va r ious   g raphs   o f   t he  same 

set  are,  of   course ,   the  same. They are des igna ted  as nc, 

as shown i n  T a b l e  1. These  values  check  with Eq. (18) , as 

they   shou ld ,   s ince   t hey   be long   t o   t he  class of  apside-to- 

a p s i d e   t r a n s f e r s .  

2. F o r   t h e   i n n e r   t r a n s f e r   ( n  < 1) from a f i x e d   i n i t i a l  

t e rmina l   po in t ,   under   cons tan t   angle  of separa t ion ,   and  

c o n s t a n t   t e r m i n a l   v e l o c i t i e s   v e c t o r s ,   t h e   t o t a l   v e l o c i t y   i m p u l s e  

r e q u i r e d   f o r   t h e   t r a n s f e r   a l o n g  each o f   t h e   t h r e e   t r a j e c t o r i e s ,  

decreases as t h e   f i n a l   t e r m i n a l   d i s t a n c e  r i n c r e a s e s ;  w h i l e  

i n  the o u t e r   t r a n s f e r   ( n  > 1) , each of   these   impulses   t end   to  

inc rease   w i th  the f i n a l   t e r m i n a l   d i s t a n c e   w i t h i n   t h e   p r e s e n t  

range of computation (see Figs .  1 2  and 1 3 ) .  

2 

3 .  The case n = 1 is  s i n g u l a r   i n  each se t  of  examples, 

s i n c e   t h e   i n i t i a l   c i r c u l a r  o r b i t  now p a s s e s   t h r o u g h   t h e   f i n a l  

t e rmina l   po in t .  F i g u r e s  9 t o  11, and  13 show tha t   each  T,, 

"1 - curve  touches t h e  T,l curve a t  n = 1, i n d i c a t i n g  T,,=T +T,2. 

I t  i s  t o  be no ted   t ha t ,   i n   examples  B,  t h e  case of n = 0 . 7 2 2  

i s  a lso s i n g u l a r   s i n c e   t h e   f i n a l   h y p e r b o l i c  o r b i t  now passes  

t h r o u g h   t h e   i n i t i a l   t e r m i n a l   p o i n t ,   a n d  i tself  i s  T,2. This  

i s  confirmed by the   p resent   computa t ion  as the   va lue   o f  f 2*2 

i s  indeed  zero a t  t h i s   p a r t i c u l a r   v a l u e   o f   n .  However, the 

c o m p u t a t i o n   r e s u l t s   i n d i c a t e   t h a t   t h e   a b s o l u t e   m i n i m a l  T,, is  
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different  from T,2 in  this case. It  can  be  verified  that 

1i=2.5 is  another  singular  case  in  example A, though  beyond the 

present range  of plotting, since  the  final  elliptic  orbit 

now  passes  through  the  initial  terminal point. 
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I X .  Summary of Conclusions 

1. A minimal   2 - impulse   t ransfer   t ra jec tory  T,* is 

bounded  between a p a i r  of bounding trajectories between  the 

same t e r m i n a l   p o i n t s   i n   t h e  same sense  of  motion,  one T,l wi th  a 

minimal i n i t i a l   impu l se ,   and   t he   o the r  (T,2), a minimal   f ina l  

impulse. 

It is n o t   o n l y  bounded by t h e  two  bounding trajectories, 

i n   t h e   p o s i t i o n   s p a c e ,   b u t   a l s o   i n   s p a c e s   o f   o t h e r   t r a j e c t o r y  

parameters,   such as (a )  the   d i r ec t ions   o f   depa r tu re   and  

a r r i v a l ,  (b) t h e   t e r m i n a l   t r a n s f e r   v e l o c i t i e s  and t h e i r  

components, Vc, VR and Vg, (c) the   t e rmina l   ve loc i ty   impu l ses ,  

(d )   t he   angu la r  momentum and  semilatus rectum, (e) t h e   o r b i t a l  

energy   and   semimajor   ax is ,   ( f )   the   eccent r ic i ty   vec tor ,  (9) t i m e  

of f l i g h t ,  etc. 

Under each item the t r a j e c t o r y   q u a n t i t i e s ,  X,1 and X,2, 

p e r t a i n i n g   t o   t h e   b o u n d i n g   t r a j e c t o r y   p a i r ,  Tel and Te2 

respec t ive ly ,   form a p a i r  of  upper  and  lower  bounds  of  the 

cor responding   quant i ty  X,, p e r t a i n i n g   t o   t h e   t r a j e c t o r y  T,, 

i f  no absolute  upper  and  lower  bounds are p resen t .   I n  case 

t h e r e   e x i s t s   a n   a b s o l u t e  bound,  upper c)r lower,  then it 

f u r n i s h e s   a n   a d d i t i o n a l   c h o i c e   f o r   t h e   p r o p e r  bound X,1 and 

X,2. (For d e t a i l s ,  see Sec t ion  V I . )  

2. A minimal   2- impulse  t ransfer   t ra jectory  a lways 

agree   wi th  i ts  b o u n d i n g   t r a j e c t o r y   p a i r   i n   k i n d   ( s h o r t   o r  

l ong   t r ans fe r ) ,   s ense   ( coun te rc lockwise  or  c lockwise) ,   type  

( e l l i p t i c ,   p a r a b o l i c ,   o r   h y p e r b o l i c ) ,  and n a t u r e  (realist ic 
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or  u n r e a l i s t i c )  i f  t hey   ag ree   t hemse lves ;   bu t   no t   necessa r i ly  

so w i t h   t h e  two t e rmina l  orbi ts .  

3 .  Under   any  terminal   condi t ions,   there  exists a t  least  

o n e   p a i r  of bounding trajectories of each  kind  and  sense; 

hence a t  least  a local minimal  2-impulse  solution, rea l i s t ic  

o r   un rea l i s t i c ,   o f   each   k ind   and   s ense .  

4 .  T h e r e   e x i s t  a t  most three bound ing   t r a j ec to ry   pa i r s  

of   the  same kind  and  sense,   and a t  most a t o t a l  of   four  

such   pa i r s  of both  kinds  and  senses.  Hence t h e r e   c a n  be no 

more than  a t r i p l e  minimum of t h e  same kind  and  sense  of  

t r a n s f e r   a n d  no more than  a quadruple minimum of  both  kinds 

and  senses.  

5. Whenever t h e  two t r a j e c t o r i e s   o f  a bounding  pair  are 

coincident ,   the   minimal   2- impulse  t ransfer   t ra jectory  bounded 

between w i l l  co inc ide   w i th  them. A d e f i n i t e   r e l a t i o n   e x i s t s  

among t h e   f o u r   t e r m i n a l   v e c t o r s ,  rl, r2, Vol, and Vo2 ,  f o r  

such  coincidence (see Eq. (IS) 1 .  When and  only when this 

coinc idence   condi t ion  i s  m e t ,  the  2-impulse  minimization 

and  the  1-impulse  minimizations a t  t h e   i n i t i a l  and f i n a l  

t e rmina l s   s epa ra t e ly  w i l l  y i e l d  the same t r a n s f e r   t r a j e c t o r y .  

a * -  a 

A l l  the foregoing  conclusions are v a l i d  for any a r b i t r a r y  

c e n t r a l   a n g l e  0 < Y < IT. For t h e   p a r t i c u l a r   c o n c l u s i o n s  

p e r t a i n i n g   t o   t h e  case of Y = R ,  see Sec t ion  VII. 
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X. F i n a l  Remarks 

As shown i n   t h e   p r e c e d i n g   S e c t i o n s ,  a g r e a t   d e a l  of 

information  concerning  the  minimal   2- impulse  t ransfer  may be 

obta ined   once   the  two bounding trajectories are determined. 

I n  many cases, d e f i n i t e   q u a l i t a t i v e   c o n c l u s i o n s  may be 

a s se r t ed   d i r ec t ly   f rom  the   bound ing   t r a j ec to ry   pa i r ;   and  

quan t i t a t ive ly ,   t he   uppe r  and  lower  bounds  of  the  principal 

parameters   per ta in ing   to   the   min imal   2 - impulse   t ransfer  may 

be   es tab l i shed .  S i n c e  each  bounding  trajectory i s  governed 

by a quar t ic   equa t ion ,   whi le   the   min imal   2 - impulse   t ransfer  

t r a j e c t o r y  i s  governed  by  an oc t i c   equa t ion ,   t he   p re sen t  

t reatment   amounts   to   solving two four th   degree   equat ions  

instead  of   one  e ighth  degree  equat ion.   In   view of t h e   f a c t  

t h a t  a qua r t i c   equa t ion  i s  much more t r a c t a b l e   t h a n   a n   o c t i c ,  

and t h a t   a n   a n a l y t i c   s o l u t i o n   i n   c l o s e d  form e x i s t s   f o r   t h e  

former,  such a t rea tment  i s  advisable .  The present   geometr ic  

approach i n   t h e  hodograph  plane by examining  the  optimal 

t r a n s f e r  arc p a i r s ,   r a t h e r   t h a n   a n   a l g e b r a i c   a p p r o a c h   t o   t h e  

so lu t ions   o f   t he   pe r t inen t   equa t ions ,   has   t he   fu r the r  advan- 

tage  of   e l iminat ing  the  extraneous  roots   of   the   governing 

o c t i c ,  which  do n o t   b e l o n g   t o   t h e   s t a t i o n a r i t y   s o l u t i o n ,  as 

w e l l  as t h e   r o o t s   f o r   t h e  maximal to t a l   impu l se   so lu t ions ,  

so tha t   the   p roblem  nar rows  down t o   l o c a t i n g  a l l  t h e   l o c a l  

minimal  solutions  and  choosing  an  absolute  minimal  and 

realist ic one. As each   bounding   t ra jec tory   has   the   par t icu lar  
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significance  of  having  a  stationarity  impulse  at  one  terminal, 

the  existing  knowledge on the  comparatively  simpler  problem 

of determining  the  optimal  1-impulse  transfer  trajectory 8 ,  20 

may be  utilized  to  aid  the  solution  of  the  2-impulse  problem. 

Thus,  in  summary,  the  advantage  of  using  the  bounding  trajec- 

tories  for  treating  the  2-impulse  transfer  problem  are  as 

f 01 lows : 

1. 

2. 

3 .  

Solution  of  two  quartic  equations  instead  of  a 

single  but  cumbersome  octic  equation. 

Utilization  of  the  existing  knowledge  on  the 

optimal  1-impulse  transfer  problem  to  aid  the 

solution  of  the  optimal  2-impulse  transfer 

problem. 

The  choice  of  a  proper  bounding  trajectory 

pair  eliminates  the  extraneous  solutions  as 

well  as  the  maximal  total  impulse  solutions. 

At first  sight  it  seems  that  the  choice  of  a  bounding 

trajectory  pair  is  generally  not  unique,  since  each  station- 

ary  quartic  may  yield  as  many  as  four  distinct  stationary 

1-impulse  trajectories.  However,  the  present  study  shows 

that  the  number of such  trajectory  pairs  cannot  exceed  three 

in  one  kind  of  transfer,  and  the  total  number  of  such  pairs, 

counting  both kinds,  cannot  exceed  four  (see  Section V-D). 

Thus  the  number  of  possible  bounding  trajectory  pairs  is 

highly  limited. In fact,  the  presence of three  bounding 
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trajectory  pairs of the  same  kind  can  happen  only  under  the 

condition  that  both  terminal  velocities  enter  the  nonsimple 

regions in the  hodograph  plane.  This  condition  requires 

that  each  terminal  velocity  be  of  sufficient  magnitude, 

'Opi 
a  direction  with  limited  deviation  from  the  minimal  energy 

direction, ( 1  ai I < - , see Fig.  C-1).  Such a  requirement  puts 
rather  stringent  conditions  on  the  terminal  orbits.  For 

example, in  a coplanar  6O0-transfer  at  n = 2,  it  requires  an 

initial  terminal  velocity Vol > 1.52  V1  and a  final  terminal 

velocity  of Vo2 > 4.13  V2.  Such  conditions  can  be  met  only 

between  two  hyperbolic  orbits of the  eccentricities cl > 3.62 

and c 2  > 3.34, a  combination  not  likely  to  be  encountered  in 

practical  problems.  Thus in the  usual  cases,  such  as  the 

transfer  between  two  moderately  eccentric  Keplerian  orbits, 

the  two  terminal  velocity  vectors  will  remain in the  simple 

regions,  and  consequently,  there  is  a  unique  bounding  trajec- 

tory  pair in each  kind.  Even  under  some  unusual  terminal 

conditions,  when  one  or  both  of  the  terminal  velocities  do 

enter  the  nonsimple  regions,  and  there  are  more  than  two 

bounding  trajectory  pairs,  the  first  choice  will  usually be 

the  pair of two  absolute  minimal  1-impulse  transfer  trajectories 

> Si  (see  Fig.  C-1  and  Eq. C-8, Appendix C), and  that  in 

'+'i 

* 
* 

if  such a  pair  exists.  Thus  the  proper  choice  of  a  bounding 

trajectory  pair,  ordinarily  does  not  present  a  problem. 

In addition  to  yielding  essential  information on the 
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minimal  2-impulse  transfer,  the  use  of  bounding  trajectories 

may  also  aid  theoretical  studies  of  such  transfers.  The 

derivation  of  the  coincidence  condition,  geometric  as  well 

as  analytic,  for  the  identical  2-impulse  minimization  and 

the  two  l-impulse  minimizations  at  the  initial  and  final 

terminals  separately  furnishes  an  example  (see  Section V-E). 

Many  other  aspects  of  2-terminal  transfers  may  be  investi- 

gated  in  the  light  of  the  bounding  trajectories:  however, 

such  investigations  are  not  intended  in  this  report. 

So far  the  present  treatment  has  been kept perfectly 

general  without  any  restrictions on the  terminal  conditions 

except  that  the  two  terminal  orbits  are  assumed  Keplerian. 

Thus  the  predictions  made  are  applicable  to  all  particular 

cases.  In  the  case  of  180°  transfer,  such  predictions  may 

not  be  necessary,  since  an  analytic  solution  exists27 , and 
the  computation  is  direct  and  simple.  However,  the  application 

of  the  bounding  trajectory  pair  may  still  help  to  bring  out 

easily  many  salient  features  of  such  a  transfer,  as  illustrated 

in  Section VII. No attempt  is  made  here  to  cover  other 

particular  cases.  However,  the  application  of  the  present 

treatment  to  various  cases  under  specialized  terminal  conditions 

should  be  straight  forward. 

Finally,  it  should  be  mentioned  that,  when  the  number 

of  impulses  are  open to choice,  three  or  more  impulses  may 

prove  to  be m r e  economical  than  two  impulses  under  the  same 

initial  and  final  terminal  conditions  in  certain  cases. 7,22,24,26 

Nevertheless,  the  two-impulse  optimum  will  continue  to  be  a 

practical  mode  of  optimal  transfer  in  most  cases  even  though 
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optimal  solutions  with  additional  impulse  or  impulses do 

exist as  the penalties on the  implementational  complexity  and 

the  duration of  transfer may well  offset  the  additional 

saving  in  fuel emnomy. A full  discussion  of  the  general 

multi-impulse  transfer  problem,  however, is beyond  the 

scope of the  present report. 
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APPENDIX A 

Derivat ion  of  the S t a t i o n a r i t y  Octic Equations  in  Symmetric 
Veloci ty   Coordinates  

In   terms of the  symmetr ic   coordinates  (V c r  VR) I t h e  

t e rmina l   ve loc i ty   impu l se   r equ i r ed  for  t h e   t r a n s f e r  is given 

by 

f 2  = Vc + V i  - 2 N  .V - 2MOiVR + Poi (i=l, 2 )  (A-1)  2 
i 01 c 

where Moi, Noi, and Poi a r e   de f ined  by Equations ( 7  t o  1 0 ) .  

C a r r y i n g   o u t   t h e   d i f f e r e n t i a t i o n   o f   E q u a t i o n  (A-1)  as 

i n d i c a t e d   i n   E q u a t i o n  ( 5 )  , and  noting  from  Equation ( 4 )  the 

d i f f e r e n t i a l   r e l a t i o n  

w e  o b t a i n ,   a f t e r   s i m p l i f i c a t i o n ,   t h e   s t a t i o n a r i t y   e q u a t i o n  

in   the  symmetr ic   form 
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a 3  - 
+ 

- 
a2 - 

- 
al - 

+ 

a =  
0 

+ 2K(No2M02Pol - NolMolPo2) 
CI 

+ 2K(NolPo2 - N P 02 01 

2 2 + MolPo2 - M  P 02 01 

+ 2(MO2Pol - M 01 P 0 2  1 

- 2 2 
a-4 - Mol - Mo2 - pol + p02 
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I 
" 

El imina t ing  Vc and  then VR a l t e r n a t e l y  from  Equations (A-3) 

and ( 4 )  r e s u l t s   i n   t h e   o c t i c s   i n  Vc and VR respec t ive ly :  

where 

Cn = a n-4 ' Rn = a 4-n n = 4 t o 8  

(-4-5) 

'n - n-4 
- K4-n a Rn = K a4-n n = o t o  4 4 -n 

Note here t h e  r e c i p r o c a l   r e l a t i o n s  among t h e  c o e f f i c i e n t s :  

T a = a  m -m (A-6) 

Cn = K 4-n T - T 
'8-n - Rn 

Rn = K 4-n T - T 
R8 -n - 'n 

(A-7 )  

where the   t r anspose  ( T )  i n d i c a t e s  t h e  interchange  of  Moi 

and Noi. 
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APPENDIX B 

!'C'ABIZ B: PRINCIPAL TRAJECTDRY PARAMETERS OF 
!E7O-IMPULSE TRANSFER IN SYMC3TRIC 

vEII)CI!tY COORDINATES 

Basic Formulas 

Transfer Velocity 

Magnitude 

(r, 8 )  components 

Path Angle 

Velocity-Increment 
(Terminal Impulse) 

Magnitude 

Direction Cosines 

Total Velocity- 
Impulse 

Angular  Momentum 

Orbital  Energy 

vri = VR - vc cos vi 

Vei = V sin yi 
C 

@i = tan-' csc vi - cot pi ) 

f = 2 JVc + V; - 2NoiVc - 2MoiVR + Voi - 2K COS $i (B-9) 2 2 
i=l 

h = v r sin yi c i  

k = +(Vc + VR) - K COS pi - -!i- 2 2 
Ti 

(B-10) 

(B-11) 
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APPENDIX B 
TABLE B. (Cont Id) 

vi  - - J v z i  + vii - 2tan JL cot vi 2 
(B-1 ) 

vri = VRi - v cos vi ci (B-2 I ) 

v e i  = v sin yi ci (B-3 ) 

( B - 4 '  ) 

fi = J.2 + v2 - - C 2noivc - 2moivR + v2i -  tan 4 cot vi - 
cos y ri = kR - vc cos vi - 

L 

cos y e i  = pc sin vi - v o e d  /% 
v/ri 

COSYNi = - 'i I= 

(B-5 '  ) 

(B-6 ) 

(B-7 ' ) 

(B-8 '  ) 

-L 

- f = J v ~ n o l v c l  - 2mOl vR1 + v:l - 2 tan 2 cot y 

+ \ / lrvzy + vR2 2 - 2n02 vc2 - 2m02 v 2 

2 1 
I 
I 

R2 + v02 - 2 tan cot p2) /n  iB-9 1 
' 

(B-10 ) 

(B-11' ) 
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APPENDIX C 

GEOMETRY OF THE  TERMINAL  VELOCITY  CONSTRAINING  HYPERBOLA 
AND THE  PERTINENT FORMULAS 

TABLE  C-1 

The ~" Pr inc ipa l  G e o m e t r i c  Elements of t he  C o n s t r a i n i n g   H y p e r b o l a  

( i  = 1 , 2 )  

The C o n s t r a i n i n g   H y p e r b o l a  

E q .  i n  R e c t a n g u l a r  
C o o r d i n a t e s  

A: 

S e m i t r a n s v e r s a l   A x i s  

S e m i c o n j u g a t e   A x i s  

C e n t e r -  to-Focus 
D i s t a n c e  

(C-3) 

ci = J: t an  4 

E c c e n t r i c i t y  v i  e =  csc - i 2 ((2-5) 

Included A n g l e   B e t w e e n  a i  - - 
t he  A s y m p t o t e s  TI - (Pi 

- 
E q .  i n  R e c t a n g u l a r   ( A . V  . )  ' - (B.V . )  = C 
C o o r d i n a t e s  

C e n t e r -   t o - V e r t e x  
D i s t a n c e  

- 
3 3 

1 5 1  1 x 1  (C-7 1 

si 

I Included A n g l e   B e t w e e n  oi = (0, (C-9 1 
t h e  A s y m p t o t e s  

- ~ ~~ 
~~ . - ~ - ~~ .- . ~ . . 
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Notes : 

1. The cons t ra in ing   hyperbola  i s  asymptot ic  t o  t h e  

t e r m i n a l   r a d i a l   d i r e c t i o n   a n d   t h e   c h o r d a l   d i r e c t i o n ,   w h i l e  

i t s  invo lu te ,  a form of Lame',  i s  asymptot ic  t o  the   t e rmina l  

t r a n s v e r s a l   d i r e c t i o n   a n d   t h e   d i r e c t i o n   p e r p e n d i c u l a r   t o  

the  chord.  The  two sets of a sympto t i c   d i r ec t ions  are thus  

o r t h o g o n a l   t o   e a c h   o t h e r .  

2. The constraining  hyperbola   and i t s  involu te   have   the  

i n t e r i o r  a n d   e x t e r i a l   b i s e c t o r s  of the   base   ang le  a t  t h e  

t e rmina l  as t h e i r  common t r ansve r sa l   and  common conjugate  axes 

re spec t ive ly .  

( A  t yp ica l   t e rmina l   cons t r a in ing   hype rbo la  i s  shown i n   F i g .  C-1. 

For t h e   p a r t i c u l a r   p o i n t s  of i n t e r e s t  on the cons t ra in ing   hyperbola ,  

See Table C-2. F o r   t h e   r e l a t i v e   o r i e n t a t i o n  of t h e  t w o  t e rmina l  

cons t ra in ing   hyperbolas ,  see. Fig. 4 . )  
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@ BRANCH 
SHORT TRANSFER l\ 

\ 

LONG oE3RANCH TRANSFER il/ G 

EVOLUTE (Lamd) 4 

S 

S 

\ E- ELLIPTK: TRANSFER 
H: HYPERBOLIC  TRANSFER 
H': HYPERBOLIC  TRANSFER,  UNREALISTIC 

Q': FY~RABOLIC TRANSFER 
.Q" PARABOLIC  TRANSFER,  UNREALISTIC 



m m 

TABLE C-2: PARTICULAR  POINTS  ON  THE  TERMINAL  CONSTRAINING 
HYPERBOLA  AND  THEIR  ASSOCIATED  TRAJECTORIES 

Transfer  Trajectory 

Minimum  Energy 

Least  Eccentricity 

Critical  (Parabolic) 

Realistic 

Unrealistic 

Points on the  Constraining  Hyperbola 

Designation 1 Location 

ST LT I 

>+ I >- I See Fig.  C-1 

Q: 

1* 
Q+ 

* 
Q- j Intersections of 

the  critical 1 circle  with  the 
Q- constraining 

; hyperbola 
1* ; 

Pertinent  Formulas (i = 1.2) 

= -  2!J 
kmin. 

+ r2 + e 
a = %(rl + r2 + 1) min. 

((2-13) 

tan 5; = /tan 2 cot iy2 (C-15-2) 



APPENDIX D 

TABLE D: TERMINAL  CONDITIONS AND T H E   D I S T R I B U T I O N   O F  
ORTHOPOINTS AND THEIR  ASSOCIATED  STATIONARY 
ONE-IMPULSE  TRANSFER  TFtAJECTORIESt 

Location of Terminal 
V e l o c i t y  Point  

Qoi 

E E - S f  

E E - N f  

H E - S f  

H E - N +  - 
H H - S f  

B o u n d a r y  between EE 
& HE: S f 

N f  
B o u n d a r y  between HE 
& HH: S f 

H I E  - Sf 
H I E  - Nf 

H ' H '  - Sf 

Location of O r t h o p o i n t s  and Types 
of the A s s o c i a t e d  Transfer 
Traje.c.tor.ies 

Qi* a *i* b Qi* c Qi* d 

"" Q*? 

H ' f  "" 

H ' f  H f (E*) H +(E*) E 7 
H'f "" 

"" H'T 

"" E ?  

N o t a t i o n s :  ' unrea l i s t i c  transfer,  + short  transfer,  - long 
transfer; fo r  others, see nomenclature. 

+ Symbols i n  parenthesis are for  the hatched portion of the 
HE-Nf or H'E-N* regions only,  see Figs. 5 and D-1. 

89 



Q, IN SIMPLE REGION Q, IN NONSMPLE REGION 

FIG. D- I TYPICAL  DISTRIBUTIONS OF THE  ORTHOPOINTS 
ON THE  CONSTRAINING  HYPERBOLA 



APPENDIX E 

Proof of the  Exis tence  of  a Two-Impulse Extrenunon  the  Optimal 
Transfer  A r c  Pair  

Assume f l  and f ,  are continuous  and twice d i f f e r e n t i a b l e .  
t 

Consider a t y p i c a l   t r a n s f e r  arc pa i r   o f   t ype  (A). With 

r e f e r e n c e   t o   F i g .  E-1, t h e  end  points   of   the  arc p a i r  Q*l 

and Q,, d e f i n e  a c l o s e d   i n t e r v a l   [ p ,  91. Since Q1* and Q,, 

are the   min imal   po in ts   on   th i s  arc p a i r ,  we  have: 

A t  p: 

A t  q: 

1 

f, = 0 O I  

I I I 

f = f 1 + f 2 < 0  

I 

f:'ol I ' I 

f = f 1 + f 2 > 0  
f, = 0 

I 

Thus f has   oppos i te   s igns  a t  t h e  endpoints ,   hence  there  is 

a t   l e a s t  a loca l   ex t remal  f on the interval .   Furthermore,  

the  absence  of any s t a t i o n a r y   p o i n t  and i n f l e c t i o n   p o i n t  on f l  and 

f ,   i n  the i n t e r i o r   o f   t h e   i n t e r v a l  shows t h a t  f l  and f a r e  

monotonical ly   increasing on t h e   i n t e r v a l ,  and so i s  f . Thus 

t h e  f curve   c rosses   the  Vc - axis only  once,  and  f" i s  p o s i t i v e  

throughout   the  interval .   Consequent ly  w e  conclude  that ,  

1 1 

I 

I 

There i s  one  and  only  one  interior  extremal f 

o n   t h e   i n t e r v a l   [ p ,  q] , a long   t he   t r ans fe r  arc p a i r  

( A ) ,  and t h i s  extremum i s  a l o c a l  minimum. 

t This   condi t ion i s  a c t u a l l y  m e t  i n  any in t e rva l   exc lud ing   t he  
or igin,   and  where  none  of   f l   and  f2   vanishes .  



Next,   consider a t y p i c a l   t r a n s f e r  arc p a i r  of type ( B ) .  

With r e f e r e n c e   t o   F i g .  E - l B ,  w e  have, o n   t h e   c l o s e d   i n t e r v a l  

[p,  q] def ined  by the   endpoin ts  Ql*a and Q1*b of the arc 

p a i r :  

A t  p: 

A t  q: 

f = f 1 + f 2 < 0  
f 2  ' i = O l  < 0 I I 

I 

f l  = 0 

f 2  < 0 
I 3 f = f 1 + f 2 < 0  

I 

Thus f has  the same s i g n  a t  the  endpoints ,   hence there i s  

e i ther   an   even  number of   in te rna l   ex t rema  of  f o r  none. 

Since,  as assumed he re ,  f goes  from  one minimum t o  one 

maximum on   t he   i n t e rva l ,   t he re   ex i s t   one  and  only  one  point 

1 

of i n f l e c t i o n  on f l ,  t h a t  i s ,  t h e r e  i s  one  and  only  one 

i n t e r i o r   e x t r e m a 1  f l  on t h e   i n t e r v a l .  On t h e  other   hand,  

i n  the absence of any s t a t i o n a r y   p o i n t   a n d   i n f l e c t i o n   p o i n t  

o the r   t han   t he   endpo in t ,   f 2  i s  monotonically  increasing,  and 

i s  negat ive  throughout  the interval .   Consequent ly ,  f f i r s t  

1 

1 

I 

i nc reases  and  then decreases, with  one  and  only  one  inter ior  

extremum  on t h e   i n t e r v a l .  Hence there are t h r e e   p o s s i b i l i t i e s :  
1 

1) f c u t s   t h e  Vc - a x i s  a t  two points .   There 

e x i s t s  a pa i r   o f   ex t rema1  va lues   o f  f ,  one 

maximal  and  one  minimal. 
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I 

I 

2 )  f touches the 

tangency, f = 

a maximum nor a 

I 

I 

ax i s .  Then a t  t h e   p o i n t   o f  

0 and f = 0 ,  f is n e i t h e r  
I1 

minimum,. 

3 )  f -  c u t s  the a x i s  a t  no poin t .  There e x i s t s  

no  extrema1 f .  

Consequently, we conclude  that ,  

There i s  e i t h e r   o n e   i n t e r i o r  minimal f and  one 

i n t e r i o r  maximal f ,  o r  none  on t h e   i n t e r v a l  

[a, b] , along the t r a n s f e r  arc p a i r  (B) . 

The p r o o f   f o r   t h e   e x i s t e n c e   o f  a l o c a l  m a x i m u m  on t h e  arc 

p a i r   o f   t y p e  (D) i s  ana logous   to  the proof   for   type  ( A ) .  
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c 

C' 

C 

OPTIMAL ARC PAIR 
TYPE A 

OPTIMAL ARC PAIR 
TYPE 6 

c 

( 

.F ' 

0 

FIG, ~ - 1  VARIATION OF THE IMPULSE  FUNCTION AND LTS D E R I V A T I V E  ALONG 
AN OPTIMAL  TRANSFER  ARC  PAIR 
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APPENDIX  F 

TABLE F: TERMINAL  CONDITIONS  AND  THE  MULTIPLICITY  OF  MINIMAL  2-IMPULSE  SOLUTIONS 

Regional  Locations 

Velocity  Points 
Case  Optimal  Transfer  Arc  Pairs  of  Terminal 

In  One  Kind  In  Other  Kind 
Qo 1 and  Sense  and  Sense Qo 2 

1 

(d,d) (ala) , (a,c) , (c,c) N f  N+ 5 

(d,a) , (d,c) (atdl Ni Sf 4 

ld t d) (ala) (a,c) Nf Sf 3 

(ala) (a,d) Si Sf  2 

(d,d)  (a,a) Sf Sf 

6 (ala) , (d,c)  (a,d) , (c,d) Ni Nf 

Maximum  Multiplicity 

In  One Kind  In  Other  Kind 
and  Sense 1 and  Sense 

1 1 1 2 1  
1 I 1 I 2 1  

2 I .1 I .3 I 
1 I 2. 1 3 1  

3 I 1 1 4 1  

2 I 2 1 4 1  

Note: For  the  double  sign, all upper  signs go together  in  each  case,  and so are  all  the  lower  signs. 





APPENDIX G 
NUMERICAL RESULTS 

TABLE G-1A. TRAJECTORY PARAMETERS FOR MINIMAL IMPULSE TRANSFERS:  CIRCLE-TO-ELLIPSE 

(wol = 1.0, w o 2  = 0.5, J, = 60°) 

I Transfer Velocities 
Distance L 

Angular Momenta 

, Radial Components Ratio 1 Chordal Components 

0.8 .8474 ,7882 .8653  .6812 .7324 .6671 1.1210 1.0427 1.1447 

0.9 

1.0001 .8303 1.0517 .5772  .6953  .5489 1.1061  .9183 1.1632  1.1 

.9999 .8231  .9999  .5773 .7013 .5773 1.1547  .9505  1.1547 1.0 

.9171  .8098  .9375  .6295 .7128 .6157 1.1224 .9912 1.1476 

I 1.2 .9814 .8332 1.0931  .5882  .6929 .5281 1.0516 .8927 1.1713 

1.3 

.9300 .8312 1.1492 .6207  .6945  .5023  .9581  .E563 1.1839  1.4 

.9558 .8331 1.1252 .6040  .6929 .5130 1.0009 .8724 1.1783 

1.5 

,8863  .8245 1.1788  .6514  .7002  .4897  .8955 .8330 1.1911 1.6 

,9067 .E282 1.1666 .6367  .6970  .4948  .9233  .8434 1.1880 

1.7 

.E537 .8163  1.1919  .6762 .7072 .4843  .8554 .8180 1.1943 1.8 

,8687 .E205  1.1869  .6645  .7036  .4863  .8732 .8247 1.1931 

1.9 

.E294  .EO82 1.1952 .6960 .7143  .4830 ,8294 .8082 1.1952  2.0 

.8407  ,8122 1.1944  .6867  .7108  .4833  .8411 .8126 1.1950 



TABLE G-1B. TRAJECTORY  PARAMETERS  FOR  MINIMAL  IMPULSE  TRANSFERS:  CIRCLE  TO  HYPERBOLA 

Transfer  Velocities Angular  Momenta 
Distance 1 Ratio I Chordal  Components  Radial  Components i 

I I I I I I I I I 

0.2 .3802  .6436 .3396 1.5182 .8970 1.6999 2.0122  3.4056  1.7971 

0.3 

-8833  1.2129 .7002 .6536 .4759 .8245 1.4819  2.0350 1.1747 0.5999 

.7483  1.1199 .6125 .7715 .5155 .9425  1.4966  2.2399  1.2251 0.4999 

.6219 .9903 .5239 .9283 .5829  1.1020 1.5651  2.4924 1.3184 0.3999 

.SO05 .8298 .4339 1.1534 .6957  1.3304 1.7123  2.8388 1.4845 

0.6999 

1.0732  1.2149  1.0517 .5379 .4752 .5489  1.1869  1.3436  1.1632  1.0999 

1.0003  1.2522 ' .9999 .5771 .4610 .5773 1.1551  1.4460 1.1547 0.9999 

.9961  1.2791 .9375 .5795 .4513 .6157  1.2192  1.5655  1.1475 0.8999 

1.0219  1.2872 .8653 .5649  .4485  .6671  1.3519  1.7028  1.1447 0.7999 

1,0332 1.2675 .7853 ,5587 .4554 .7351  1.5148  1.8584  1.1514 

1 1.1999 I 1.1713 I 1.2574 I 1.1899 I .5281 I .4919 I .5199 1 1.0931  11.1735 1 1.1104 I 

, 

1.2999  1.1783  1.1856  1.1804  .5130  .5099  .5121  1.1252  1.1322 

1.3999 1.1839 1.1264 1.1651 .5023 .5279 .5104 1.1492 1.0935  1.1309 

, 1.4999 1.1880 1.0778 1.1473 .4948 .5454 .5124 1.1666 1.0584  1.1267 

1.5999 1.1911 1.0379 1.1290 .4897 .5620 .5166 1.1788 1.0272  1.1174 

I 1.6999 1.1931 1.0050 1.1109 .4863 .5774 .5223 1.1869 .9998 1 1.1052 



TABLE G-2A.  TERMINAL  IMPULSES  REQUIRED  FOR  MINIMAL  IMPULSE  TRANSFERS:  CIRCLE-TO-ELLIPSE 

9 
9 

Distance 
Ratio 

n=r /r 

.2000 

.3000 

.3999 

.4999 

.5999 
,6999 
.7999 

.9999 
1.0999 
1,1999 
1.2999 
1.3999 
1.4999 
1.5999 
1.6999 
1.7999 

1.9999 

2 1  

.a999 

1.8999 

Initial 

1*1 

.6635 

.5730 

.488 1 

.4051 
-3224 
.2398 
.1577 
.0774 
.oooo 
.0734 
.1421 
.2057 
.2641 
.3175 
.3662 
.4105 
.4508 
.4875 
.5202 

-r 
Final 

2*1 

2.3606 
1.7479 
1.3565 
1.0760 
.8647 
.7081 
.5989 
.5320 
.4999 
.4926 
.4999 
.5142 
.5307 
.5469 
.5618 
.5749 
5861 
.5956 
.6034 

Total - f*l - 
fl*l + 

2*1 

3.0241 
2.3209 
1.8447 
1.4811 
1.1871 
.9479 
.7567 
.6094 
.4999 
.5661 
,6421 
.7199 
.7949 
,8645 

.9854 
1.0369 
1.0831 
1.1237 

.92ao 

(vol = 1.0, vo2 = 0.5, J, = 60') 

rn I 

Initial 

1*2 

.8407 

.6782 

.5442 

.4257 

.3237 

.2484 

.2175 

.2369 

.2870 

.3473 

.4078 

.4649 

.5171 

.5644 

.6071 

.6455 

.6801 
,7113 
.7390 

* 2 

Final 

2*2 

2.3105 
1.7140 
1.3368 
1.0684 
.8642 
.7051 
.5785 
.4768 
.3944 
.3271 
.2719 
.2261 
.1819 
.1557 
.1284 
.lo51 
.0850 
,0676 
.0531 

T Total  Initial f*2 - 
f1*2 + 

f2*2  fl** 

- 

3.1513 .6715 
2.3922 .5790 
1.8810 .4918 
1.4942 .4066 
1.1880 .3225 
.9535 .2403 
.7960 .1613 
.I137 .0847 
,6814 ,0000 
.6745 ,1048 
.6798 .2113 
.6910 .3099 
.7050 .3968 
.7202 .4715 
.7355 .5356 
.7506 .5908 
.7651 .6385 
.7790 .6801 
.7921 .7166 

Final 

f2* * 
2.3426 
1.7342 
1.3479 
1.0720 
.8645 
.7067 
.5908 
.5169 
.4999 
.4356 

.3061 

.2516 

.2055 

.1670 

.1347 
,1076 
,0847 
,0650 

.x86 

T 
I 

Total 
f** = 

fl** + 

f2** 

3.0142 
2.3133 
1.8398 
1.4791 

.9471 

.7522 

.6017 

.4999 

.5405 

.5800 

.6161 

.6771 

.7027 

.7255 

.7461 

.7648 
,7815 

1.1870 

.64a4 

Relative  Saving 

f *l' f * * 
*1 

.0032 

.0033 

.0026 

.0013 

.0001 

.0008 

.0059 

.01'26 

.5444 

.0452 

.0967 

.1442 

.2167 

.2636 

.2938 

.3045 

.la42 

. m a  

.2ao3 

f*2-f** 
f*2 

.0435 

.0330 

.0219 

.OlOO 

.0008 

.0066 

.0551 

.1569 

.3343 

.1986 
,1468 

.0803 

.0446 

.0333 

.loa4 

.os98 

.024a 
,0182 
.0133 

1 



TABLE G2B. TERMINAL  IMPULSES  REQUIRED  FOR  MINIMAL  IMPULSE  TRANSFERS:  CIRCLE-TO-HYPERBOLA 

(wo l  = 1.0, wo 2  = 1.5, JI = 60') 

T 'I* * m I Relative  Saving 

Initial  Final 

fl**  f2** 

0.7704 

I 0.6493 0.5459 
0.6454 0.5091 
0.6381 0.4679 
0.6273  0.4230 
0.6122  0.3742 
0.5918  0.3215 
0.5654  0.2652 
0.5334 0.2057 
0.4990 0.1440 
0.4750  0.0795 
0.4996 0.0003 
0.4791 0.1234 ' 

0.4179 0.3208 
0.3845  0.5500 
0.6704  0.5489 
0.9932  0.5818 
1.3764 0.6331 
1.8742  0.6956 
2.6170 

-"--- 
Total I 

f** = f*1-f** 
fl** + I  f*l 

f2** I 
3.3875 

.lo07 I. 2193 
,0768 1.5751 
.0568 2.0096 
.0411 2.5699 
.0288 

.9345  ,1203 
,7387  .lo02 
.6026  ,0485 
,4999 .oooo 
.5545 .0113 
,6431 

.0127 .9865 
,0066  .9134 
.0018 .E307 
.OOOO ,7392 
.0037 

1.0504  .0190 
1.1060  .0251 
1.1545  .0308 
1.1952  .0360 

f * y f * *  

"2 

.2454 

.2354 

.2208 

.1961 . l?OO 

.0500 

.l347 

.2378 

.3097 

.x755 

.0405 
,0001 
.0077 
.0194 
.0277 
.0327 
.0355 
.0369 
.0375 

I 


